{"title":"All pairs shortest paths in undirected graphs with integer weights","authors":"Avi Shoshan, Uri Zwick","doi":"10.1109/SFFCS.1999.814635","DOIUrl":null,"url":null,"abstract":"We show that the all pairs shortest paths (APSP) problem for undirected graphs with integer edge weights taken from the range {1, 2, ..., M} can be solved using only a logarithmic number of distance products of matrices with elements in the range (1, 2, ..., M). As a result, we get an algorithm for the APSP problem in such graphs that runs in O~(Mn/sup /spl omega//) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and /spl omega/<2.376 is the exponent of matrix multiplication. This improves, and also simplifies, an O~(M/sup (/spl omega/+1)/2/n/sup /spl omega//) time algorithm of Galil and Margalit (1997).","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142
Abstract
We show that the all pairs shortest paths (APSP) problem for undirected graphs with integer edge weights taken from the range {1, 2, ..., M} can be solved using only a logarithmic number of distance products of matrices with elements in the range (1, 2, ..., M). As a result, we get an algorithm for the APSP problem in such graphs that runs in O~(Mn/sup /spl omega//) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and /spl omega/<2.376 is the exponent of matrix multiplication. This improves, and also simplifies, an O~(M/sup (/spl omega/+1)/2/n/sup /spl omega//) time algorithm of Galil and Margalit (1997).