All pairs shortest paths in undirected graphs with integer weights

Avi Shoshan, Uri Zwick
{"title":"All pairs shortest paths in undirected graphs with integer weights","authors":"Avi Shoshan, Uri Zwick","doi":"10.1109/SFFCS.1999.814635","DOIUrl":null,"url":null,"abstract":"We show that the all pairs shortest paths (APSP) problem for undirected graphs with integer edge weights taken from the range {1, 2, ..., M} can be solved using only a logarithmic number of distance products of matrices with elements in the range (1, 2, ..., M). As a result, we get an algorithm for the APSP problem in such graphs that runs in O~(Mn/sup /spl omega//) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and /spl omega/<2.376 is the exponent of matrix multiplication. This improves, and also simplifies, an O~(M/sup (/spl omega/+1)/2/n/sup /spl omega//) time algorithm of Galil and Margalit (1997).","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

We show that the all pairs shortest paths (APSP) problem for undirected graphs with integer edge weights taken from the range {1, 2, ..., M} can be solved using only a logarithmic number of distance products of matrices with elements in the range (1, 2, ..., M). As a result, we get an algorithm for the APSP problem in such graphs that runs in O~(Mn/sup /spl omega//) time, where n is the number of vertices in the input graph, M is the largest edge weight in the graph, and /spl omega/<2.376 is the exponent of matrix multiplication. This improves, and also simplifies, an O~(M/sup (/spl omega/+1)/2/n/sup /spl omega//) time algorithm of Galil and Margalit (1997).
权值为整数的无向图中的所有对最短路径
我们证明了无向图的全对最短路径(APSP)问题,其边权取整数,范围为{1,2,…, M}只能用元素在(1,2,…)范围内的矩阵的距离积的对数个数来求解。结果,我们得到了一种求解此类图中APSP问题的算法,其运行时间为O~(Mn/sup /spl omega//),其中n为输入图中顶点数,M为图中最大边权,/spl omega/<2.376为矩阵乘法指数。这改进并简化了Galil和Margalit(1997)的O~(M/sup (/spl ω /+1)/2/n/sup /spl ω //)时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信