Visual Dynamic Simulation Model of Unstructured Data in Social Networks

Zhang Xiang
{"title":"Visual Dynamic Simulation Model of Unstructured Data in Social Networks","authors":"Zhang Xiang","doi":"10.1155/2022/9095330","DOIUrl":null,"url":null,"abstract":"Social networks contain a large amount of unstructured data. To ensure the stability of unstructured big data, this study proposes a method for visual dynamic simulation model of unstructured data in social networks. This study uses the Hadoop platform and data visualization technology to establish a univariate linear regression model according to the time correlation between data, estimates and approximates perceptual data, and collects unstructured data of social networks. Then, the unstructured data collected from the original social network are processed, and an adaptive threshold is designed to filter out the influence of noise. The unstructured data of social network after feature analysis are processed to extract its visual features. Finally, this study carries out the Hadoop cluster design, implements data persistence by HDFS, uses MapReduce to extract data clusters for distributed computing, builds a visual dynamic simulation model of unstructured data in social network, and realizes the display of unstructured data in social network. The experimental results show that this method has a good visualization effect on unstructured data in social networks and can effectively improve the stability and efficiency of unstructured data visualization in social networks.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Secur. Commun. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9095330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social networks contain a large amount of unstructured data. To ensure the stability of unstructured big data, this study proposes a method for visual dynamic simulation model of unstructured data in social networks. This study uses the Hadoop platform and data visualization technology to establish a univariate linear regression model according to the time correlation between data, estimates and approximates perceptual data, and collects unstructured data of social networks. Then, the unstructured data collected from the original social network are processed, and an adaptive threshold is designed to filter out the influence of noise. The unstructured data of social network after feature analysis are processed to extract its visual features. Finally, this study carries out the Hadoop cluster design, implements data persistence by HDFS, uses MapReduce to extract data clusters for distributed computing, builds a visual dynamic simulation model of unstructured data in social network, and realizes the display of unstructured data in social network. The experimental results show that this method has a good visualization effect on unstructured data in social networks and can effectively improve the stability and efficiency of unstructured data visualization in social networks.
社交网络中非结构化数据的可视化动态仿真模型
社交网络包含大量的非结构化数据。为保证非结构化大数据的稳定性,本研究提出了一种社交网络中非结构化数据可视化动态仿真模型的方法。本研究利用Hadoop平台和数据可视化技术,根据数据之间的时间相关性,建立单变量线性回归模型,对感知数据进行估计和近似,收集社交网络的非结构化数据。然后,对原始社交网络中采集的非结构化数据进行处理,设计自适应阈值滤除噪声的影响。对特征分析后的社交网络非结构化数据进行处理,提取其视觉特征。最后,本研究进行了Hadoop集群设计,通过HDFS实现数据持久化,利用MapReduce提取数据集群进行分布式计算,构建了社交网络中非结构化数据的可视化动态仿真模型,实现了社交网络中非结构化数据的显示。实验结果表明,该方法对社交网络中的非结构化数据具有良好的可视化效果,能够有效提高社交网络中非结构化数据可视化的稳定性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信