{"title":"Spray Evaporative Cooling System Design for Automotive Internal Combustion Engines","authors":"J. T. Jose, J. Dunne, J. Pirault, C. Long","doi":"10.1115/ICEF2018-9659","DOIUrl":null,"url":null,"abstract":"IC engine spray evaporative cooling system design is discussed starting with a review of existing evaporative cooling systems that automotive applications are required to address. A component-level system design is proposed culminating in a simulation model of a PID strategy used to control transient gasside metal temperatures with varying engine load. The model combines a spray evaporation correlation model with 1D finite-difference equations to model the transient heat transfer through a 7 mm thick metal slab which represents the wall of a cylinderhead. Based on the simulation results, the particular changes required of existing engine cooling jacket designs are discussed.","PeriodicalId":448421,"journal":{"name":"Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICEF2018-9659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
IC engine spray evaporative cooling system design is discussed starting with a review of existing evaporative cooling systems that automotive applications are required to address. A component-level system design is proposed culminating in a simulation model of a PID strategy used to control transient gasside metal temperatures with varying engine load. The model combines a spray evaporation correlation model with 1D finite-difference equations to model the transient heat transfer through a 7 mm thick metal slab which represents the wall of a cylinderhead. Based on the simulation results, the particular changes required of existing engine cooling jacket designs are discussed.