Multi-Key Privacy-Preserving Training and Classification using Supervised Machine Learning Techniques in Cloud Computing

R. Kishore, A. Chandra Sekhar, P. Patro, Debabrata Swain
{"title":"Multi-Key Privacy-Preserving Training and Classification using Supervised Machine Learning Techniques in Cloud Computing","authors":"R. Kishore, A. Chandra Sekhar, P. Patro, Debabrata Swain","doi":"10.1109/ACCAI58221.2023.10200291","DOIUrl":null,"url":null,"abstract":"Cloud computing contains lots of processing power and storage. Cloud computing and machine learning (ML) techniques enable large-scale data processing. The enhanced ML-based categorization technique is established in the cloud. However, there is a risk of privacy leaking of training data in the data processing. The computational and communication costs of the information possessor(s) must be maintained to a minimum. This study suggests a multi-key enhanced support vector machine (MK-FHE) and multi-key fully homomorphic encryption (MK-FHE) supervised machine learning method for encrypted data (ESVM).The results suggest that MK-FHE protects data privacy and is more effective in processing.","PeriodicalId":382104,"journal":{"name":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCAI58221.2023.10200291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing contains lots of processing power and storage. Cloud computing and machine learning (ML) techniques enable large-scale data processing. The enhanced ML-based categorization technique is established in the cloud. However, there is a risk of privacy leaking of training data in the data processing. The computational and communication costs of the information possessor(s) must be maintained to a minimum. This study suggests a multi-key enhanced support vector machine (MK-FHE) and multi-key fully homomorphic encryption (MK-FHE) supervised machine learning method for encrypted data (ESVM).The results suggest that MK-FHE protects data privacy and is more effective in processing.
云计算中使用监督机器学习技术的多密钥隐私保护训练和分类
云计算包含大量的处理能力和存储。云计算和机器学习(ML)技术使大规模数据处理成为可能。在云中建立了增强的基于ml的分类技术。但在数据处理过程中存在着训练数据隐私泄露的风险。信息所有者的计算和通信成本必须保持在最低限度。本研究提出了一种多密钥增强支持向量机(MK-FHE)和多密钥完全同态加密(MK-FHE)监督的加密数据机器学习方法(ESVM)。结果表明,MK-FHE保护了数据隐私,处理效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信