Towards a new speech event detection approach for landmark-based speech recognition

Stefan Ziegler, Bogdan Ludusan, G. Gravier
{"title":"Towards a new speech event detection approach for landmark-based speech recognition","authors":"Stefan Ziegler, Bogdan Ludusan, G. Gravier","doi":"10.1109/SLT.2012.6424247","DOIUrl":null,"url":null,"abstract":"In this work, we present a new approach for the classification and detection of speech units for the use in landmark or event-based speech recognition systems. We use segmentation to model any time-variable speech unit by a fixed-dimensional observation vector, in order to train a committee of boosted decision stumps on labeled training data. Given an unknown speech signal, the presence of a desired speech unit is estimated by searching for each time frame the corresponding segment, that provides the maximum classification score. This approach improves the accuracy of a phoneme classification task by 1.7%, compared to classification using HMMs. Applying this approach to the detection of broad phonetic landmarks inside a landmark-driven HMM-based speech recognizer significantly improves speech recognition.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we present a new approach for the classification and detection of speech units for the use in landmark or event-based speech recognition systems. We use segmentation to model any time-variable speech unit by a fixed-dimensional observation vector, in order to train a committee of boosted decision stumps on labeled training data. Given an unknown speech signal, the presence of a desired speech unit is estimated by searching for each time frame the corresponding segment, that provides the maximum classification score. This approach improves the accuracy of a phoneme classification task by 1.7%, compared to classification using HMMs. Applying this approach to the detection of broad phonetic landmarks inside a landmark-driven HMM-based speech recognizer significantly improves speech recognition.
基于标记的语音识别中语音事件检测方法的研究
在这项工作中,我们提出了一种用于语音单元分类和检测的新方法,用于基于地标或事件的语音识别系统。我们使用一个固定维的观察向量来分割任何时变语音单元,以便在标记的训练数据上训练一组增强的决策残桩。给定未知语音信号,通过在每个时间框架中搜索相应的片段来估计所需语音单元的存在,从而提供最大的分类分数。与使用hmm分类相比,该方法将音素分类任务的准确率提高了1.7%。将该方法应用于基于标记驱动的基于hmm的语音识别器中广泛语音标记的检测,显著提高了语音识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信