Scholastic: Graphical Human-AI Collaboration for Inductive and Interpretive Text Analysis

Matt-Heun Hong, Lauren A. Marsh, Jessica L. Feuston, Joan H Ruppert, Jed R. Brubaker, D. Szafir
{"title":"Scholastic: Graphical Human-AI Collaboration for Inductive and Interpretive Text Analysis","authors":"Matt-Heun Hong, Lauren A. Marsh, Jessica L. Feuston, Joan H Ruppert, Jed R. Brubaker, D. Szafir","doi":"10.1145/3526113.3545681","DOIUrl":null,"url":null,"abstract":"Interpretive scholars generate knowledge from text corpora by manually sampling documents, applying codes, and refining and collating codes into categories until meaningful themes emerge. Given a large corpus, machine learning could help scale this data sampling and analysis, but prior research shows that experts are generally concerned about algorithms potentially disrupting or driving interpretive scholarship. We take a human-centered design approach to addressing concerns around machine-assisted interpretive research to build Scholastic, which incorporates a machine-in-the-loop clustering algorithm to scaffold interpretive text analysis. As a scholar applies codes to documents and refines them, the resulting coding schema serves as structured metadata which constrains hierarchical document and word clusters inferred from the corpus. Interactive visualizations of these clusters can help scholars strategically sample documents further toward insights. Scholastic demonstrates how human-centered algorithm design and visualizations employing familiar metaphors can support inductive and interpretive research methodologies through interactive topic modeling and document clustering.","PeriodicalId":200048,"journal":{"name":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526113.3545681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Interpretive scholars generate knowledge from text corpora by manually sampling documents, applying codes, and refining and collating codes into categories until meaningful themes emerge. Given a large corpus, machine learning could help scale this data sampling and analysis, but prior research shows that experts are generally concerned about algorithms potentially disrupting or driving interpretive scholarship. We take a human-centered design approach to addressing concerns around machine-assisted interpretive research to build Scholastic, which incorporates a machine-in-the-loop clustering algorithm to scaffold interpretive text analysis. As a scholar applies codes to documents and refines them, the resulting coding schema serves as structured metadata which constrains hierarchical document and word clusters inferred from the corpus. Interactive visualizations of these clusters can help scholars strategically sample documents further toward insights. Scholastic demonstrates how human-centered algorithm design and visualizations employing familiar metaphors can support inductive and interpretive research methodologies through interactive topic modeling and document clustering.
学术:用于归纳和解释文本分析的图形人机协作
解释学者从文本语料库中生成知识,方法是手动取样文档,应用代码,并将代码提炼和整理成类别,直到出现有意义的主题。鉴于语料库庞大,机器学习可以帮助扩展数据采样和分析,但之前的研究表明,专家们普遍担心算法可能会破坏或推动解释性学术研究。我们采用以人为中心的设计方法来解决围绕机器辅助解释性研究的问题,以构建Scholastic,它包含了一个机器在循环中的聚类算法来支撑解释性文本分析。当学者将代码应用于文档并对其进行细化时,生成的编码模式作为结构化元数据,约束从语料库中推断出的分层文档和词簇。这些集群的交互式可视化可以帮助学者战略性地对文档进行采样,进一步深入了解。Scholastic演示了以人为中心的算法设计和可视化如何使用熟悉的隐喻,通过交互式主题建模和文档聚类来支持归纳和解释研究方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信