A neural network approach to coronary heart disease risk assessment based on short-term measurement of RR intervals

F. Azuaje, W. Dubitzky, X. Wu, P. Lopes, N. Black, K. Adamson, J. White
{"title":"A neural network approach to coronary heart disease risk assessment based on short-term measurement of RR intervals","authors":"F. Azuaje, W. Dubitzky, X. Wu, P. Lopes, N. Black, K. Adamson, J. White","doi":"10.1109/CIC.1997.647828","DOIUrl":null,"url":null,"abstract":"Using short-term heart rate variability (HRV) measurements, this study investigates the relationship between respiratory sinus arrhythmia (RSA) and Coronary Heart Disease (CHD) risk in asymptomatic patients who nevertheless exhibit CHD risk factors. The aim is to train an artificial neutral network (ANN) to recognise HRV patterns related to CHD risk via a Poincare plot encoding. The ANN correctly classified 6 out of 9 'high' 6 out of 9 'medium', and 6 out of 9 'low' risk test cases. It is expected that this result can be improved by increasing the number of input neurons and by using different preprocessing techniques. This study showed that an ANN approach can be successful in detecting individuals at varying risk of CHD based on short-term HRV measurements under controlled breathing.","PeriodicalId":228649,"journal":{"name":"Computers in Cardiology 1997","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Cardiology 1997","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.1997.647828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Using short-term heart rate variability (HRV) measurements, this study investigates the relationship between respiratory sinus arrhythmia (RSA) and Coronary Heart Disease (CHD) risk in asymptomatic patients who nevertheless exhibit CHD risk factors. The aim is to train an artificial neutral network (ANN) to recognise HRV patterns related to CHD risk via a Poincare plot encoding. The ANN correctly classified 6 out of 9 'high' 6 out of 9 'medium', and 6 out of 9 'low' risk test cases. It is expected that this result can be improved by increasing the number of input neurons and by using different preprocessing techniques. This study showed that an ANN approach can be successful in detecting individuals at varying risk of CHD based on short-term HRV measurements under controlled breathing.
基于短期RR区间测量的冠心病风险评估的神经网络方法
使用短期心率变异性(HRV)测量,本研究调查了无症状患者呼吸性窦性心律失常(RSA)与冠心病(CHD)风险之间的关系,但仍存在冠心病危险因素。目的是训练一个人工神经网络(ANN),通过庞加莱图编码来识别与冠心病风险相关的HRV模式。人工神经网络正确分类了9个“高”风险测试案例中的6个,9个“中”风险测试案例中的6个,9个“低”风险测试案例中的6个。期望通过增加输入神经元的数量和使用不同的预处理技术可以改善这一结果。这项研究表明,基于控制呼吸下的短期HRV测量,人工神经网络方法可以成功地检测出具有不同冠心病风险的个体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信