Discovering Popular Point of Interests for Tourism with Appropriate Names from Social Data Analysis

Yutaka Arakawa
{"title":"Discovering Popular Point of Interests for Tourism with Appropriate Names from Social Data Analysis","authors":"Yutaka Arakawa","doi":"10.1145/2637064.2637100","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for determining an appropriate names of popular POIs (Point of Interests) obtained in a clustering-based social spatial data analysis. The proposed method utilizes several reverse geocoding APIs, such as Foursquare and Google, and selects the most probable name for each cluster. In addition, the author tries to figure out the adequate dataset size when the proposed name assign method is used. Because the proposed name assign method is not affected by the size of dataset. By using the collected data, more than 4 million geo-tagged photos of 5 cities from Flickr, the author confirmed that the proposed method can assign more proper name for the clustering results compared with a conventional tag-based name assign method, even if the size of dataset is small.","PeriodicalId":239987,"journal":{"name":"Proceedings of the 2014 International Workshop on Web Intelligence and Smart Sensing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 International Workshop on Web Intelligence and Smart Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2637064.2637100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method for determining an appropriate names of popular POIs (Point of Interests) obtained in a clustering-based social spatial data analysis. The proposed method utilizes several reverse geocoding APIs, such as Foursquare and Google, and selects the most probable name for each cluster. In addition, the author tries to figure out the adequate dataset size when the proposed name assign method is used. Because the proposed name assign method is not affected by the size of dataset. By using the collected data, more than 4 million geo-tagged photos of 5 cities from Flickr, the author confirmed that the proposed method can assign more proper name for the clustering results compared with a conventional tag-based name assign method, even if the size of dataset is small.
本文提出了一种在基于聚类的社会空间数据分析中确定热门兴趣点(poi)名称的方法。该方法利用几个反向地理编码api,如Foursquare和Google,并为每个集群选择最可能的名称。此外,作者试图在使用建议的名称分配方法时找出适当的数据集大小。因为建议的名称分配方法不受数据集大小的影响。通过使用收集到的来自Flickr的5个城市的400多万张地理标记照片数据,作者证实了即使数据集规模较小,与传统的基于标签的名称分配方法相比,所提出的方法可以为聚类结果分配更合适的名称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信