Multilayer Scene Similarity Assessment

A. Stefanidis, Caixia Wang, Xu Lu, Kevin M. Curtin
{"title":"Multilayer Scene Similarity Assessment","authors":"A. Stefanidis, Caixia Wang, Xu Lu, Kevin M. Curtin","doi":"10.1109/ICDMW.2009.117","DOIUrl":null,"url":null,"abstract":"As we move increasingly towards multi-source data analysis, the assessment of similarity of complex, multilayer scenes is becoming increasingly important for spatial data mining. In this paper, we present a content-based approach for scene similarity assessment. The proposed approach is based on a graph-matching scheme that models linear feature networks (road network) as graphs and additional GIS information (e.g. buildings) as layer content. This allows us to combine diverse but co-located pieces of information (e.g. roads and buildings) in an integrated similarity assessment process. In the paper we present key theoretical concepts and provide experimental results to demonstrate the capability and robustness of the proposed approach.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As we move increasingly towards multi-source data analysis, the assessment of similarity of complex, multilayer scenes is becoming increasingly important for spatial data mining. In this paper, we present a content-based approach for scene similarity assessment. The proposed approach is based on a graph-matching scheme that models linear feature networks (road network) as graphs and additional GIS information (e.g. buildings) as layer content. This allows us to combine diverse but co-located pieces of information (e.g. roads and buildings) in an integrated similarity assessment process. In the paper we present key theoretical concepts and provide experimental results to demonstrate the capability and robustness of the proposed approach.
多层场景相似度评估
随着我们越来越趋向于多源数据分析,复杂、多层场景的相似性评估在空间数据挖掘中变得越来越重要。在本文中,我们提出了一种基于内容的场景相似性评估方法。该方法基于一种图形匹配方案,该方案将线性特征网络(道路网络)建模为图形,将附加的GIS信息(例如建筑物)建模为层内容。这使我们能够在一个综合的相似性评估过程中结合不同但位于同一位置的信息片段(例如道路和建筑物)。在本文中,我们提出了关键的理论概念,并提供了实验结果来证明该方法的能力和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信