Neural network recognition of magnetic ink code line using magnetically sensed time variant signal

S. Mostert, J. J. van Rensburg, N. Goosen
{"title":"Neural network recognition of magnetic ink code line using magnetically sensed time variant signal","authors":"S. Mostert, J. J. van Rensburg, N. Goosen","doi":"10.1109/COMSIG.1992.274274","DOIUrl":null,"url":null,"abstract":"This paper provides a solution unique in that the speed varies with the person swiping the check past the head, and the recognition is made without any additional timing information. Techniques applied and researched vary from neural networks to various heuristics based on the properties of the signal derived from the magnetic sense head. The neural network recognition is explored in more detail to find the most optimal solution.<<ETX>>","PeriodicalId":342857,"journal":{"name":"Proceedings of the 1992 South African Symposium on Communications and Signal Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1992 South African Symposium on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1992.274274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a solution unique in that the speed varies with the person swiping the check past the head, and the recognition is made without any additional timing information. Techniques applied and researched vary from neural networks to various heuristics based on the properties of the signal derived from the magnetic sense head. The neural network recognition is explored in more detail to find the most optimal solution.<>
利用磁感时变信号的磁墨码行神经网络识别
这篇论文提供了一种独特的解决方案,它的速度随着刷过头部的人而变化,而且不需要任何额外的时间信息就可以进行识别。应用和研究的技术从神经网络到基于磁感应头信号特性的各种启发式方法不等。更详细地探讨了神经网络识别的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信