Isolated Spoken Word Recognition Using One-Dimensional Convolutional Neural Network

J. A. Qadir, Abdulbasit K. Al-Talabani, Hiwa A. Aziz
{"title":"Isolated Spoken Word Recognition Using One-Dimensional Convolutional Neural Network","authors":"J. A. Qadir, Abdulbasit K. Al-Talabani, Hiwa A. Aziz","doi":"10.5391/ijfis.2020.20.4.272","DOIUrl":null,"url":null,"abstract":"Isolated uttered word recognition has many applications in human–computer interfaces. Feature extraction in speech represents a vital and challenging step for speech-based classification. In this work, we propose a one-dimensional convolutional neural network (CNN) that extracts learned features and classifies them based on a multilayer perceptron. The proposed models are tested on a designed dataset of 119 speakers uttering Kurdish digits (0–9). The results show that both speaker-dependent (average accuracy of 98.5%) and speaker-independent (average accuracy of 97.3%) models achieve convincing results. The analysis of the results shows that 9 of the speakers have a bias characteristic, and their results are outliers compared to the other 110 speakers.","PeriodicalId":354250,"journal":{"name":"Int. J. Fuzzy Log. Intell. Syst.","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Log. Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5391/ijfis.2020.20.4.272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Isolated uttered word recognition has many applications in human–computer interfaces. Feature extraction in speech represents a vital and challenging step for speech-based classification. In this work, we propose a one-dimensional convolutional neural network (CNN) that extracts learned features and classifies them based on a multilayer perceptron. The proposed models are tested on a designed dataset of 119 speakers uttering Kurdish digits (0–9). The results show that both speaker-dependent (average accuracy of 98.5%) and speaker-independent (average accuracy of 97.3%) models achieve convincing results. The analysis of the results shows that 9 of the speakers have a bias characteristic, and their results are outliers compared to the other 110 speakers.
基于一维卷积神经网络的孤立口语单词识别
孤立词识别在人机界面中有着广泛的应用。语音特征提取是基于语音的分类中至关重要且具有挑战性的一步。在这项工作中,我们提出了一种一维卷积神经网络(CNN),它可以提取学习到的特征并基于多层感知器对它们进行分类。提出的模型在一个设计的数据集上进行了测试,该数据集包含119个说库尔德语数字(0-9)的人。结果表明,依赖于说话人的模型(平均准确率为98.5%)和独立于说话人的模型(平均准确率为97.3%)都取得了令人信服的结果。结果分析表明,9名说话者具有偏置特征,与其他110名说话者相比,他们的结果是异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信