Volume-Based Large Dynamic Graph Analytics

Valentin Bruder, Marcel Hlawatsch, S. Frey, Michael Burch, D. Weiskopf, T. Ertl
{"title":"Volume-Based Large Dynamic Graph Analytics","authors":"Valentin Bruder, Marcel Hlawatsch, S. Frey, Michael Burch, D. Weiskopf, T. Ertl","doi":"10.1109/iV.2018.00045","DOIUrl":null,"url":null,"abstract":"We present an approach for interactively analyzing large dynamic graphs consisting of several thousand time steps with a particular focus on temporal aspects. we employ a static representation of the time-varying graph based on the concept of space-time cubes, i.e., we create a volumetric representation of the graph by stacking the adjacency matrices of each of its time steps. To achieve an efficient analysis of complex data, we discuss three classes of analytics methods of particular importance in this context: data views, aggregation and filtering, and comparison. For these classes, we present a GPU-based implementation of respective analysis methods that enable the interactive analysis of large graphs. We demonstrate the utility as well as the scalability of our approach by presenting application examples for analyzing different time-varying data sets.","PeriodicalId":312162,"journal":{"name":"2018 22nd International Conference Information Visualisation (IV)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2018.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present an approach for interactively analyzing large dynamic graphs consisting of several thousand time steps with a particular focus on temporal aspects. we employ a static representation of the time-varying graph based on the concept of space-time cubes, i.e., we create a volumetric representation of the graph by stacking the adjacency matrices of each of its time steps. To achieve an efficient analysis of complex data, we discuss three classes of analytics methods of particular importance in this context: data views, aggregation and filtering, and comparison. For these classes, we present a GPU-based implementation of respective analysis methods that enable the interactive analysis of large graphs. We demonstrate the utility as well as the scalability of our approach by presenting application examples for analyzing different time-varying data sets.
基于体积的大型动态图形分析
我们提出了一种交互式分析由几千个时间步组成的大型动态图的方法,特别关注时间方面。我们采用基于时空立方体概念的时变图的静态表示,即,我们通过堆叠其每个时间步长的邻接矩阵来创建图的体积表示。为了实现对复杂数据的有效分析,我们讨论了在此上下文中特别重要的三类分析方法:数据视图、聚合和过滤以及比较。对于这些类,我们提出了基于gpu的各自分析方法的实现,使大型图形的交互式分析成为可能。我们通过展示用于分析不同时变数据集的应用程序示例来演示该方法的实用性和可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信