Fractional order sliding mode control with pole-placement for non-linear systems with uncertain disturbances

Djari Abdelhamid, Bouarroudj Noureddine, V. F. Batlle, Boukhetala Djamel, Fares Bodjema
{"title":"Fractional order sliding mode control with pole-placement for non-linear systems with uncertain disturbances","authors":"Djari Abdelhamid, Bouarroudj Noureddine, V. F. Batlle, Boukhetala Djamel, Fares Bodjema","doi":"10.1109/ICOSC.2017.7958659","DOIUrl":null,"url":null,"abstract":"in this paper a combination between fractional order sliding mode control (FOSMC) and pole-placement is introduced for non-linear systems with uncertain disturbances. A sliding surface with a fractional order PID form is given, in which the eigenvalues of the reduced state equation of the errors are forced to be negative via the pole-placement method. The control law is designed based on the Lyapunov stability condition and the fractional order calculus properties. In the simulation results, a comparison between our FOSMC controller and an integer order sliding mode control (IOSMC) for an inverted pendulum system demonstrates the better performance of our proposal.","PeriodicalId":113395,"journal":{"name":"2017 6th International Conference on Systems and Control (ICSC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2017.7958659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

in this paper a combination between fractional order sliding mode control (FOSMC) and pole-placement is introduced for non-linear systems with uncertain disturbances. A sliding surface with a fractional order PID form is given, in which the eigenvalues of the reduced state equation of the errors are forced to be negative via the pole-placement method. The control law is designed based on the Lyapunov stability condition and the fractional order calculus properties. In the simulation results, a comparison between our FOSMC controller and an integer order sliding mode control (IOSMC) for an inverted pendulum system demonstrates the better performance of our proposal.
具有不确定扰动的非线性系统的分数阶滑模极点控制
针对具有不确定扰动的非线性系统,提出了分数阶滑模控制与极点配置相结合的方法。给出了一种分数阶PID形式的滑动曲面,通过极点放置法使其误差的化简状态方程的特征值为负。基于李雅普诺夫稳定条件和分数阶微积分性质设计了控制律。在仿真结果中,将我们的FOSMC控制器与倒立摆系统的整数阶滑模控制器(IOSMC)进行了比较,证明了我们的方案具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信