KOMBINASI METODE K-MEANS DAN DECISION TREE DENGAN PERBANDINGAN KRITERIA DAN SPLIT DATA

Elly Muningsih
{"title":"KOMBINASI METODE K-MEANS DAN DECISION TREE DENGAN PERBANDINGAN KRITERIA DAN SPLIT DATA","authors":"Elly Muningsih","doi":"10.33365/jti.v16i1.1561","DOIUrl":null,"url":null,"abstract":"Data mining is a process of looking for patterns or pulling large and selected data information using certain techniques or methods. The K-Means and Decision Tree methods are part of the Data Mining technique. This study will combine the K-Means method to cluster data into three clusters then the results of the clustering will be classified using the Decision Tree Method with a comparison of the Gain Ratio, Information Gain and Gini Index criteria. The data is processed into two, namely training data and testing data with a percentage of 70:30, 80:20 and 90:10. The results of the research are to find out which criteria produce the best decision tree and performance based on the highest accuracy value from each data group. The data is taken from the UCI Repository with a total of 811 records and 52 attributes. From the data processing carried out, it is known that for the 70:30 data split, the accuracy value with the Gain Ratio, Information Gain and Gini Index criteria gets the same value, namely 97.53. The Gain Ratio and Gini Index criteria produce the highest accuracy value, which is 98.15% for 80:20 split data. While Information Gain got the highest accuracy value of 98.77% for 90:10 data split. Keyword : data mining, clustering, k-means, classification, decision tree","PeriodicalId":344455,"journal":{"name":"Jurnal Teknoinfo","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknoinfo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33365/jti.v16i1.1561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data mining is a process of looking for patterns or pulling large and selected data information using certain techniques or methods. The K-Means and Decision Tree methods are part of the Data Mining technique. This study will combine the K-Means method to cluster data into three clusters then the results of the clustering will be classified using the Decision Tree Method with a comparison of the Gain Ratio, Information Gain and Gini Index criteria. The data is processed into two, namely training data and testing data with a percentage of 70:30, 80:20 and 90:10. The results of the research are to find out which criteria produce the best decision tree and performance based on the highest accuracy value from each data group. The data is taken from the UCI Repository with a total of 811 records and 52 attributes. From the data processing carried out, it is known that for the 70:30 data split, the accuracy value with the Gain Ratio, Information Gain and Gini Index criteria gets the same value, namely 97.53. The Gain Ratio and Gini Index criteria produce the highest accuracy value, which is 98.15% for 80:20 split data. While Information Gain got the highest accuracy value of 98.77% for 90:10 data split. Keyword : data mining, clustering, k-means, classification, decision tree
数据挖掘是使用某些技术或方法寻找模式或提取大量选定数据信息的过程。k均值和决策树方法是数据挖掘技术的一部分。本研究将结合K-Means方法将数据聚类为三类,然后使用决策树方法对聚类结果进行分类,并比较增益比,信息增益和基尼指数标准。将数据处理成两部分,即训练数据和测试数据,比例分别为70:30、80:20和90:10。研究的结果是找出哪个标准产生最佳的决策树和性能基于最高的准确性值从每个数据组。数据取自UCI储存库,总共有811条记录和52个属性。通过对数据的处理可知,对于70:30的数据分割,采用增益比、信息增益和基尼指数标准得到的精度值相同,均为97.53。增益比和基尼指数标准产生最高的准确度值,对于80:20分割的数据为98.15%。而Information Gain在90:10数据分割时准确率最高,达到98.77%。关键词:数据挖掘,聚类,k-means,分类,决策树
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信