B

Shun-Cheng Chang
{"title":"B","authors":"Shun-Cheng Chang","doi":"10.1515/9783112599266-003","DOIUrl":null,"url":null,"abstract":"Let M be a compact Kählerm-manifold that has a Kähler metric ds2 = gαβ̄ dz α ⊗ dz̄ . Then it is known that, for the Ricci curvature tensor Rαβ̄ = −(∂2/∂zα∂z̄β) log det(gλμ̄), √−1 2π Rαβ̄ dz α ∧ dz̄ is a closed(1,1)-form and its cohomology class is equal to the first Chern class C1(M). Conversely, it was Calabi who asked if, for any closed (1,1)-form √−1 2π R̃αβ̄ dz α ∧ dz̄ that is cohomologous toC1(M), can one find a Kähler metric̃ gαβ̄ onM such thatR̃αβ̄ is the Ricci curvature tensor of̃ gαβ̄? As a consequence of Aubin and Yau’s results, one can find a Kähler–Einstein metric on M with C1(M) = 0 orC1(M) < 0. WhenC1(M) > 0, the space of Kähler–Einstein metrics are invariant under automorphism group. However, the existence does not always hold in general [F; M; T; TY]. Instead of the Kähler–Einstein metric, we consider the notion of extremal metrics due to Calabi [C1]. Namely, fix a Kähler class 0 = [ω0] on a compact Kähler manifoldM and denote byH 0 the space of all Kähler metrics with the same fixed Kähler class 0. Now consider the functional 8 : H 0 → R, 8(g) = ∫","PeriodicalId":388243,"journal":{"name":"Deutsches Reich","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1929-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deutsches Reich","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783112599266-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let M be a compact Kählerm-manifold that has a Kähler metric ds2 = gαβ̄ dz α ⊗ dz̄ . Then it is known that, for the Ricci curvature tensor Rαβ̄ = −(∂2/∂zα∂z̄β) log det(gλμ̄), √−1 2π Rαβ̄ dz α ∧ dz̄ is a closed(1,1)-form and its cohomology class is equal to the first Chern class C1(M). Conversely, it was Calabi who asked if, for any closed (1,1)-form √−1 2π R̃αβ̄ dz α ∧ dz̄ that is cohomologous toC1(M), can one find a Kähler metric̃ gαβ̄ onM such thatR̃αβ̄ is the Ricci curvature tensor of̃ gαβ̄? As a consequence of Aubin and Yau’s results, one can find a Kähler–Einstein metric on M with C1(M) = 0 orC1(M) < 0. WhenC1(M) > 0, the space of Kähler–Einstein metrics are invariant under automorphism group. However, the existence does not always hold in general [F; M; T; TY]. Instead of the Kähler–Einstein metric, we consider the notion of extremal metrics due to Calabi [C1]. Namely, fix a Kähler class 0 = [ω0] on a compact Kähler manifoldM and denote byH 0 the space of all Kähler metrics with the same fixed Kähler class 0. Now consider the functional 8 : H 0 → R, 8(g) = ∫
B
设M是一个紧致Kählerm-manifold,它有一个Kähler度规ds2 = gαβ ' dz α⊗dz '。则可知,对于里奇曲率张量Rαβ θ =−(∂2/∂zα∂z θ β) log det(gλμ θ),√−12 π r α αβ β θ∧dz θ是一个闭(1,1)-形式,其上同调类等于第一陈氏类C1(M)。相反,Calabi问,对于任何与c1 (M)共系的(1,1)闭型√−12 π R α αβ β dz α∧dz,是否可以找到一个Kähler度规R α αβ β onM,使得R α αβ是λ αβ的里奇曲率张量?根据Aubin和Yau的结果,我们可以在M上找到C1(M) = 0或C1(M) < 0的Kähler-Einstein度量。当1(M) > 0时,Kähler-Einstein度量空间在自同构群下是不变的。然而,存在性并不总是一般地成立[F;M;T;泰]。由于Calabi [C1],我们考虑了极值度量的概念,而不是Kähler-Einstein度量。即,在紧致的Kähler流形dm上固定一个Kähler类‐0 = [ω0],并用h‐0表示所有具有相同固定的Kähler类‐0的Kähler度量的空间。现在考虑泛函8:H→R, 8(g) =∫
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信