STL Decomposition and SARIMA Model: The Case for Estimating Value-at-Risk of Covid-19 Increment Rate in DKI Jakarta

Agnes Zahrani, Aniq A. Rohmawati, Siti Sa’adah
{"title":"STL Decomposition and SARIMA Model: The Case for Estimating Value-at-Risk of Covid-19 Increment Rate in DKI Jakarta","authors":"Agnes Zahrani, Aniq A. Rohmawati, Siti Sa’adah","doi":"10.21108/ijoict.v7i2.553","DOIUrl":null,"url":null,"abstract":"In this research, we propose an extreme values measure, the Value-at-Risk (VaR) based Seasonal Trend Loess (STL) Decomposition and Seasonal Autoregressive Integrated Moving Average (SARIMA) models, which is more sensitive to the seasonality of extreme value than the conventional VaR. We consider the problem of the seasonality and extreme value for increment rate of Covid-19 forecasting. For stakeholder, government and regulator, VaR estimation can be implemented to face the extreme wave of new positive Covid-19 in the future and minimize the losses that possibly affected in term of financial and human resources. Specifically, the estimation of VaR is developed with the difference lies on parameter estimators of STL and SARIMA model. The VaR has coverage probability as well as close 1-α. Thus, we propose to set α as parameter to estimate VaR. Consequently, the performance of VaR will depend not only on parameter model but also α. Our aim estimates VaR with minimum α based on correct VaR value. Numerical analysis is carried out to illustrate the estimative VaR.","PeriodicalId":137090,"journal":{"name":"International Journal on Information and Communication Technology (IJoICT)","volume":"1043 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information and Communication Technology (IJoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/ijoict.v7i2.553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we propose an extreme values measure, the Value-at-Risk (VaR) based Seasonal Trend Loess (STL) Decomposition and Seasonal Autoregressive Integrated Moving Average (SARIMA) models, which is more sensitive to the seasonality of extreme value than the conventional VaR. We consider the problem of the seasonality and extreme value for increment rate of Covid-19 forecasting. For stakeholder, government and regulator, VaR estimation can be implemented to face the extreme wave of new positive Covid-19 in the future and minimize the losses that possibly affected in term of financial and human resources. Specifically, the estimation of VaR is developed with the difference lies on parameter estimators of STL and SARIMA model. The VaR has coverage probability as well as close 1-α. Thus, we propose to set α as parameter to estimate VaR. Consequently, the performance of VaR will depend not only on parameter model but also α. Our aim estimates VaR with minimum α based on correct VaR value. Numerical analysis is carried out to illustrate the estimative VaR.
STL分解和SARIMA模型:雅加达DKI地区Covid-19风险值增量率估算案例
本文提出了一种极端值度量方法,即基于风险值(VaR)的季节性趋势黄土(STL)分解和季节性自回归综合移动平均(SARIMA)模型,该模型对极端值的季节性比传统VaR更为敏感,并考虑了新冠肺炎增量率预测的季节性和极端值问题。对于利益相关者、政府和监管机构而言,可以实施VaR估计,以应对未来新冠病毒阳性的极端浪潮,并最大限度地减少可能影响的财务和人力资源损失。具体而言,VaR的估计是由STL模型和SARIMA模型的参数估计器进行的。VaR具有覆盖概率,且接近1-α。因此,我们建议将α作为VaR的参数来估计VaR,因此VaR的性能不仅取决于参数模型,而且取决于α。我们的目标是在正确VaR值的基础上用最小α估计VaR。通过数值分析来说明VaR的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信