Team JUST at the MADAR Shared Task on Arabic Fine-Grained Dialect Identification

Bashar Talafha, A. Fadel, M. Al-Ayyoub, Y. Jararweh, Mohammad Al-Smadi, P. Juola
{"title":"Team JUST at the MADAR Shared Task on Arabic Fine-Grained Dialect Identification","authors":"Bashar Talafha, A. Fadel, M. Al-Ayyoub, Y. Jararweh, Mohammad Al-Smadi, P. Juola","doi":"10.18653/v1/W19-4638","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our team’s effort on the MADAR Shared Task on Arabic Fine-Grained Dialect Identification. The task requires building a system capable of differentiating between 25 different Arabic dialects in addition to MSA. Our approach is simple. After preprocessing the data, we use Data Augmentation (DA) to enlarge the training data six times. We then build a language model and extract n-gram word-level and character-level TF-IDF features and feed them into an MNB classifier. Despite its simplicity, the resulting model performs really well producing the 4th highest F-measure and region-level accuracy and the 5th highest precision, recall, city-level accuracy and country-level accuracy among the participating teams.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we describe our team’s effort on the MADAR Shared Task on Arabic Fine-Grained Dialect Identification. The task requires building a system capable of differentiating between 25 different Arabic dialects in addition to MSA. Our approach is simple. After preprocessing the data, we use Data Augmentation (DA) to enlarge the training data six times. We then build a language model and extract n-gram word-level and character-level TF-IDF features and feed them into an MNB classifier. Despite its simplicity, the resulting model performs really well producing the 4th highest F-measure and region-level accuracy and the 5th highest precision, recall, city-level accuracy and country-level accuracy among the participating teams.
MADAR阿拉伯语细粒度方言识别共享任务小组
在本文中,我们描述了我们团队在MADAR阿拉伯语细粒度方言识别共享任务上所做的努力。这项任务需要建立一个能够区分25种不同阿拉伯语方言和MSA的系统。我们的方法很简单。在对训练数据进行预处理后,我们使用数据增强(data Augmentation, DA)将训练数据放大6倍。然后,我们建立了一个语言模型,提取了n元词级和字符级TF-IDF特征,并将它们输入到MNB分类器中。尽管它很简单,但所得到的模型表现得非常好,在参与团队中产生了第四高的f度量和区域级别的准确性,第五高的精度,召回率,城市级别的准确性和国家级别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信