Massive Social Network Analysis: Mining Twitter for Social Good

David Ediger, Karl Jiang, E. J. Riedy, David A. Bader, Courtney Corley, R. Farber, William N. Reynolds
{"title":"Massive Social Network Analysis: Mining Twitter for Social Good","authors":"David Ediger, Karl Jiang, E. J. Riedy, David A. Bader, Courtney Corley, R. Farber, William N. Reynolds","doi":"10.1109/ICPP.2010.66","DOIUrl":null,"url":null,"abstract":"Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Toolkit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes and a real-world graph (Kwak, et al.) with 61.6 million vertices and 1.47 billion edges in 105 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system. Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"171","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171

Abstract

Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Toolkit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes and a real-world graph (Kwak, et al.) with 61.6 million vertices and 1.47 billion edges in 105 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system. Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.
大规模社会网络分析:挖掘Twitter的社会利益
社交网络产生了大量的数据。Facebook由超过4亿活跃用户组成,每个月分享超过50亿条信息。分析如此大量的非结构化数据对软件和硬件都提出了挑战。我们提出GraphCT,一个图形表征工具包,用于表示社交网络数据的大量图形。在拥有128个处理器的Cray XMT上,GraphCT在55分钟内估计了人工生成(R-MAT) 5.37亿个顶点、86亿个边的图和具有6160万个顶点和14.7亿个边的真实图(Kwak等人)的中间性中心性。我们使用GraphCT分析来自微博网络Twitter的公开数据。作为一个新闻传播系统,Twitter的信息连接主要呈树状结构。然而,在公共数据中,是对话的集群。使用GraphCT,我们可以对这些对话中的参与者进行排序,并帮助分析人员将注意力集中在更小的数据子集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信