David Ediger, Karl Jiang, E. J. Riedy, David A. Bader, Courtney Corley, R. Farber, William N. Reynolds
{"title":"Massive Social Network Analysis: Mining Twitter for Social Good","authors":"David Ediger, Karl Jiang, E. J. Riedy, David A. Bader, Courtney Corley, R. Farber, William N. Reynolds","doi":"10.1109/ICPP.2010.66","DOIUrl":null,"url":null,"abstract":"Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Toolkit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes and a real-world graph (Kwak, et al.) with 61.6 million vertices and 1.47 billion edges in 105 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system. Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"171","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 171
Abstract
Social networks produce an enormous quantity of data. Facebook consists of over 400 million active users sharing over 5 billion pieces of information each month. Analyzing this vast quantity of unstructured data presents challenges for software and hardware. We present GraphCT, a Graph Characterization Toolkit for massive graphs representing social network data. On a 128-processor Cray XMT, GraphCT estimates the betweenness centrality of an artificially generated (R-MAT) 537 million vertex, 8.6 billion edge graph in 55 minutes and a real-world graph (Kwak, et al.) with 61.6 million vertices and 1.47 billion edges in 105 minutes. We use GraphCT to analyze public data from Twitter, a microblogging network. Twitter's message connections appear primarily tree-structured as a news dissemination system. Within the public data, however, are clusters of conversations. Using GraphCT, we can rank actors within these conversations and help analysts focus attention on a much smaller data subset.