On Quantitative Algebraic Higher-Order Theories

Ugo Dal Lago, F. Honsell, Marina Lenisa, Paolo Pistone
{"title":"On Quantitative Algebraic Higher-Order Theories","authors":"Ugo Dal Lago, F. Honsell, Marina Lenisa, Paolo Pistone","doi":"10.48550/arXiv.2204.13654","DOIUrl":null,"url":null,"abstract":"We explore the possibility of extending Mardare et al quantitative algebras to the structures which naturally emerge from Combinatory Logic and the λ -calculus. First of all, we show that the framework is indeed applicable to those structures, and give soundness and completeness results. Then, we prove some negative results which clearly delineate to which extent categories of metric spaces can be models of such theories. We conclude by giving several examples of non-trivial higher-order quantitative algebras.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.13654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We explore the possibility of extending Mardare et al quantitative algebras to the structures which naturally emerge from Combinatory Logic and the λ -calculus. First of all, we show that the framework is indeed applicable to those structures, and give soundness and completeness results. Then, we prove some negative results which clearly delineate to which extent categories of metric spaces can be models of such theories. We conclude by giving several examples of non-trivial higher-order quantitative algebras.
关于定量代数高阶理论
我们探索了将Mardare等定量代数扩展到组合逻辑和λ微积分中自然出现的结构的可能性。首先,我们证明了该框架确实适用于这些结构,并给出了健全性和完备性的结果。然后,我们证明了一些否定的结果,这些结果清楚地描述了度量空间的范畴在多大程度上可以成为这些理论的模型。最后给出了几个非平凡高阶定量代数的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信