Descriptive Stability of Fuzzy Rule-Based Systems

Corrado Mencar, C. Castiello
{"title":"Descriptive Stability of Fuzzy Rule-Based Systems","authors":"Corrado Mencar, C. Castiello","doi":"10.1109/FUZZ45933.2021.9494598","DOIUrl":null,"url":null,"abstract":"Fuzzy Rule-Based Systems (FRBSs) are endowed with a knowledge base that can be used to provide model and outcome explanations. Usually, FRBSs are acquired from data by applying some learning methods: it is expected that, when modeling the same phenomenon, the FRBSs resulting from the application of a learning method should provide almost the same explanations. This requires a stability in the description of the knowledge bases that can be evaluated through the proposed measure of Descriptive Stability. The measure has been applied on three methods for generating FRBSs based on three benchmark datasets. The results show that, under same settings, different methods may produce FRBSs with varying stability, which impacts on their ability to provide trustful explanations.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuzzy Rule-Based Systems (FRBSs) are endowed with a knowledge base that can be used to provide model and outcome explanations. Usually, FRBSs are acquired from data by applying some learning methods: it is expected that, when modeling the same phenomenon, the FRBSs resulting from the application of a learning method should provide almost the same explanations. This requires a stability in the description of the knowledge bases that can be evaluated through the proposed measure of Descriptive Stability. The measure has been applied on three methods for generating FRBSs based on three benchmark datasets. The results show that, under same settings, different methods may produce FRBSs with varying stability, which impacts on their ability to provide trustful explanations.
模糊规则系统的描述稳定性
基于模糊规则的系统(FRBSs)具有知识库,可用于提供模型和结果解释。通常,FRBSs是通过应用一些学习方法从数据中获得的:期望在对同一现象建模时,应用学习方法得到的FRBSs应该提供几乎相同的解释。这需要知识库描述的稳定性,可以通过提议的描述性稳定性度量来评估。该方法已应用于基于三个基准数据集的三种生成frbs的方法。结果表明,在相同的环境下,不同的方法可能产生稳定性不同的FRBSs,这影响了他们提供可信解释的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信