Profile Guided Optimization Transfer-Learning for OpenCL/SYCL Kernel Compilation and Runtime

Wenju He, Maosu Zhao, Yuxin Zou, Feng Zou
{"title":"Profile Guided Optimization Transfer-Learning for OpenCL/SYCL Kernel Compilation and Runtime","authors":"Wenju He, Maosu Zhao, Yuxin Zou, Feng Zou","doi":"10.1145/3585341.3585359","DOIUrl":null,"url":null,"abstract":"Reducing SYCL kernel compilation time and overhead of runtime are important topics for heterogeneous computing performance. Profile-Guided Optimization (PGO) is an optimization technique widely used in compiler to better optimize code. We apply PGO to both SYCL kernel compilation and backend runtime. The first experiment demonstrates transfer-learning that profiling data collected from SPEC CPU® 2006 benchmark can benefit kernel compilation on OpenCL/SYCL benchmarks. The second experiment also demonstrates transfer-learning that profiling data collected from some OpenCL/SYCL benchmarks could be used to reduce CPU backend runtime overhead in unseen benchmarks.","PeriodicalId":360830,"journal":{"name":"Proceedings of the 2023 International Workshop on OpenCL","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3585341.3585359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing SYCL kernel compilation time and overhead of runtime are important topics for heterogeneous computing performance. Profile-Guided Optimization (PGO) is an optimization technique widely used in compiler to better optimize code. We apply PGO to both SYCL kernel compilation and backend runtime. The first experiment demonstrates transfer-learning that profiling data collected from SPEC CPU® 2006 benchmark can benefit kernel compilation on OpenCL/SYCL benchmarks. The second experiment also demonstrates transfer-learning that profiling data collected from some OpenCL/SYCL benchmarks could be used to reduce CPU backend runtime overhead in unseen benchmarks.
面向OpenCL/SYCL内核编译和运行时的配置文件引导优化迁移学习
减少SYCL内核编译时间和运行时开销是提高异构计算性能的重要课题。概要文件引导优化(PGO)是一种广泛应用于编译器的优化技术,可以更好地优化代码。我们将PGO应用于SYCL内核编译和后端运行时。第一个实验演示了迁移学习,从SPEC CPU®2006基准测试中收集的分析数据可以使OpenCL/SYCL基准测试的内核编译受益。第二个实验还演示了迁移学习,即从一些OpenCL/SYCL基准测试中收集的分析数据可以用于减少未见基准测试中的CPU后端运行时开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信