Chrysa Collyda, Evlampios Apostolidis, Alexandros Pournaras, Fotini Markatopoulou, V. Mezaris, I. Patras
{"title":"VideoAnalysis4ALL: An On-line Tool for the Automatic Fragmentation and Concept-based Annotation, and the Interactive Exploration of Videos","authors":"Chrysa Collyda, Evlampios Apostolidis, Alexandros Pournaras, Fotini Markatopoulou, V. Mezaris, I. Patras","doi":"10.1145/3078971.3079015","DOIUrl":null,"url":null,"abstract":"This paper presents the VideoAnalysis4ALL tool that supports the automatic fragmentation and concept-based annotation of videos, and the exploration of the annotated video fragments through an interactive user interface. The developed web application decomposes the video into two different granularities, namely shots and scenes, and annotates each fragment by evaluating the existence of a number (several hundreds) of high-level visual concepts in the keyframes extracted from these fragments. Through the analysis the tool enables the identification and labeling of semantically coherent video fragments, while its user interfaces allow the discovery of these fragments with the help of human-interpretable concepts. The integrated state-of-the-art video analysis technologies perform very well and, by exploiting the processing capabilities of multi-thread / multi-core architectures, reduce the time required for analysis to approximately one third of the video's duration, thus making the analysis three times faster than real-time processing.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents the VideoAnalysis4ALL tool that supports the automatic fragmentation and concept-based annotation of videos, and the exploration of the annotated video fragments through an interactive user interface. The developed web application decomposes the video into two different granularities, namely shots and scenes, and annotates each fragment by evaluating the existence of a number (several hundreds) of high-level visual concepts in the keyframes extracted from these fragments. Through the analysis the tool enables the identification and labeling of semantically coherent video fragments, while its user interfaces allow the discovery of these fragments with the help of human-interpretable concepts. The integrated state-of-the-art video analysis technologies perform very well and, by exploiting the processing capabilities of multi-thread / multi-core architectures, reduce the time required for analysis to approximately one third of the video's duration, thus making the analysis three times faster than real-time processing.