VideoAnalysis4ALL: An On-line Tool for the Automatic Fragmentation and Concept-based Annotation, and the Interactive Exploration of Videos

Chrysa Collyda, Evlampios Apostolidis, Alexandros Pournaras, Fotini Markatopoulou, V. Mezaris, I. Patras
{"title":"VideoAnalysis4ALL: An On-line Tool for the Automatic Fragmentation and Concept-based Annotation, and the Interactive Exploration of Videos","authors":"Chrysa Collyda, Evlampios Apostolidis, Alexandros Pournaras, Fotini Markatopoulou, V. Mezaris, I. Patras","doi":"10.1145/3078971.3079015","DOIUrl":null,"url":null,"abstract":"This paper presents the VideoAnalysis4ALL tool that supports the automatic fragmentation and concept-based annotation of videos, and the exploration of the annotated video fragments through an interactive user interface. The developed web application decomposes the video into two different granularities, namely shots and scenes, and annotates each fragment by evaluating the existence of a number (several hundreds) of high-level visual concepts in the keyframes extracted from these fragments. Through the analysis the tool enables the identification and labeling of semantically coherent video fragments, while its user interfaces allow the discovery of these fragments with the help of human-interpretable concepts. The integrated state-of-the-art video analysis technologies perform very well and, by exploiting the processing capabilities of multi-thread / multi-core architectures, reduce the time required for analysis to approximately one third of the video's duration, thus making the analysis three times faster than real-time processing.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents the VideoAnalysis4ALL tool that supports the automatic fragmentation and concept-based annotation of videos, and the exploration of the annotated video fragments through an interactive user interface. The developed web application decomposes the video into two different granularities, namely shots and scenes, and annotates each fragment by evaluating the existence of a number (several hundreds) of high-level visual concepts in the keyframes extracted from these fragments. Through the analysis the tool enables the identification and labeling of semantically coherent video fragments, while its user interfaces allow the discovery of these fragments with the help of human-interpretable concepts. The integrated state-of-the-art video analysis technologies perform very well and, by exploiting the processing capabilities of multi-thread / multi-core architectures, reduce the time required for analysis to approximately one third of the video's duration, thus making the analysis three times faster than real-time processing.
VideoAnalysis4ALL:视频自动碎片化、基于概念的注释和交互式探索的在线工具
本文提出了VideoAnalysis4ALL工具,该工具支持视频的自动分段和基于概念的注释,并通过交互式用户界面对注释后的视频片段进行探索。开发的web应用程序将视频分解为两个不同的粒度,即镜头和场景,并通过评估从这些片段中提取的关键帧中是否存在一些(数百个)高级视觉概念来注释每个片段。通过分析,该工具能够识别和标记语义连贯的视频片段,而其用户界面允许在人类可解释的概念的帮助下发现这些片段。集成的最先进的视频分析技术表现非常好,并且通过利用多线程/多核架构的处理能力,将分析所需的时间减少到视频持续时间的三分之一左右,从而使分析速度比实时处理快三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信