Medical Image Enhancement using Salp Swarm Algorithm

D. Saha, Supriya Dhabal
{"title":"Medical Image Enhancement using Salp Swarm Algorithm","authors":"D. Saha, Supriya Dhabal","doi":"10.1109/ICCE50343.2020.9290659","DOIUrl":null,"url":null,"abstract":"The article suggests the idea of digital image enhancement using Salp Swarm Algorithm (SSA). The input image is enhanced by increasing the pixel intensity via cost function containing local and global information. The output analysis of the suggested algorithm is presented with respect to the Number of Detected Edges, Entropy, Peak Signal to Noise Ratio (PSNR), Detail Variance (DV), and Background Variance (BV). The simulation results demonstrated that the suggested SSA algorithm is superior to other meta-heuristic techniques.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article suggests the idea of digital image enhancement using Salp Swarm Algorithm (SSA). The input image is enhanced by increasing the pixel intensity via cost function containing local and global information. The output analysis of the suggested algorithm is presented with respect to the Number of Detected Edges, Entropy, Peak Signal to Noise Ratio (PSNR), Detail Variance (DV), and Background Variance (BV). The simulation results demonstrated that the suggested SSA algorithm is superior to other meta-heuristic techniques.
提出了利用Salp群算法(SSA)进行数字图像增强的思想。通过包含局部和全局信息的代价函数来增强输入图像的像素强度。给出了基于检测边缘数、熵、峰值信噪比(PSNR)、细节方差(DV)和背景方差(BV)的算法输出分析。仿真结果表明,该算法优于其他元启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信