Evolvability in Evolutionary Robotics: Evolving the Genotype-Phenotype Mapping

L. König, H. Schmeck
{"title":"Evolvability in Evolutionary Robotics: Evolving the Genotype-Phenotype Mapping","authors":"L. König, H. Schmeck","doi":"10.1109/SASO.2010.27","DOIUrl":null,"url":null,"abstract":"A completely evolvable genotype-phenotype mapping (ceGPM) is studied with respect to its capability of improving the flexibility of artificial evolution. By letting mutation affect not only controller genotypes, but also the mapping from genotype to phenotype, the future e effects of mutation can change over time. In this way, the need for prior parameter adaptation can be reduced. Experiments indicate that the ceGPM is capable of robustly adapting to a benchmark behavior. A comparison to a related approach shows significant improvements in evolvability.","PeriodicalId":370044,"journal":{"name":"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems","volume":"620 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2010.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A completely evolvable genotype-phenotype mapping (ceGPM) is studied with respect to its capability of improving the flexibility of artificial evolution. By letting mutation affect not only controller genotypes, but also the mapping from genotype to phenotype, the future e effects of mutation can change over time. In this way, the need for prior parameter adaptation can be reduced. Experiments indicate that the ceGPM is capable of robustly adapting to a benchmark behavior. A comparison to a related approach shows significant improvements in evolvability.
进化机器人的可进化性:基因型-表型图谱的进化
研究了一种完全可进化的基因型-表型定位(ceGPM)提高人工进化灵活性的能力。通过让突变不仅影响控制基因型,而且影响从基因型到表型的映射,突变的未来影响可以随着时间的推移而改变。这样可以减少对先验参数自适应的需要。实验表明,ceGPM能够鲁棒地适应基准行为。与相关方法的比较显示出在可进化性方面的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信