Multi-sensor registration for objects motion detection

L. Cinque, F. Renzo, G. Foresti, C. Micheloni, Gabriele Morrone
{"title":"Multi-sensor registration for objects motion detection","authors":"L. Cinque, F. Renzo, G. Foresti, C. Micheloni, Gabriele Morrone","doi":"10.1145/1877868.1877890","DOIUrl":null,"url":null,"abstract":"The first step in order to achieve low-level multi-sensor fusion is the registration of images from multiple types of sensors. This is a very important task: it can be useful to improve the detection or the tracking of a moving object in an area. Putting together the information of an IR (infrared) and a visual camera we can use the information of the heat emanated from a human body to detect a pedestrian in the video.\n Basically we can align the IR and visual data knowing the calibration of the sensors, and always moving them together. In a real situation, it can be useful to align the images without imposing anything on the starting condition of the cameras and their relative position. In this paper, we present a method to automatically register IR with visual image data. The method uses geometric structures that are matched with a partial graph matching algorithm. We also introduce an iterative method to map IR and visual sequences using the homography matrix between frames. This method can be used to improve the multi-sensor motion detection: from an initial detection of a moving object in the visual image we can obtain the corresponding region in the thermal image.","PeriodicalId":360789,"journal":{"name":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE international workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877868.1877890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The first step in order to achieve low-level multi-sensor fusion is the registration of images from multiple types of sensors. This is a very important task: it can be useful to improve the detection or the tracking of a moving object in an area. Putting together the information of an IR (infrared) and a visual camera we can use the information of the heat emanated from a human body to detect a pedestrian in the video. Basically we can align the IR and visual data knowing the calibration of the sensors, and always moving them together. In a real situation, it can be useful to align the images without imposing anything on the starting condition of the cameras and their relative position. In this paper, we present a method to automatically register IR with visual image data. The method uses geometric structures that are matched with a partial graph matching algorithm. We also introduce an iterative method to map IR and visual sequences using the homography matrix between frames. This method can be used to improve the multi-sensor motion detection: from an initial detection of a moving object in the visual image we can obtain the corresponding region in the thermal image.
目标运动检测的多传感器配准
实现低层次多传感器融合的第一步是对多类型传感器的图像进行配准。这是一项非常重要的任务:它可以用于改进对区域中移动物体的检测或跟踪。把红外(红外线)和可视摄像机的信息放在一起,我们可以利用人体散发的热量信息来检测视频中的行人。基本上,我们可以对齐红外和视觉数据,知道传感器的校准,并始终将它们移动在一起。在实际情况下,在不影响相机起始条件及其相对位置的情况下对齐图像可能很有用。本文提出了一种红外图像与视觉图像数据自动配准的方法。该方法使用与部分图匹配算法匹配的几何结构。我们还介绍了一种利用帧间单应矩阵映射红外和视觉序列的迭代方法。该方法可用于改进多传感器运动检测:从对视觉图像中运动物体的初始检测中得到热图像中相应的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信