K. Bhuvanagiri, Aditya Vikram Daga, R. Sitaram, Suryaprakash Kompalli
{"title":"Hand-Drawn Symbol Spotting Using Semi-definite Programming Based Sub-graph Matching","authors":"K. Bhuvanagiri, Aditya Vikram Daga, R. Sitaram, Suryaprakash Kompalli","doi":"10.1109/ICFHR.2010.51","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of hand-drawn symbol spotting in document images. We use stochastic graphical models (SGMs) to represent the structure and variations of hand-drawn symbols. We use a framework which first carries out segmentation and graph formation of the input image, followed by sub-graph matching for spotting of hand-drawn symbols. We used SGMs in place of sub-graphs in a semi-definite programming based sub-graph matching to do the spotting. The experimental results validate our framework. We were able to spot hand-drawn symbols from 10 classes with 78.89% accuracy in a database of 76 document images and also were able to deal with confusingly similar symbol classes.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we address the problem of hand-drawn symbol spotting in document images. We use stochastic graphical models (SGMs) to represent the structure and variations of hand-drawn symbols. We use a framework which first carries out segmentation and graph formation of the input image, followed by sub-graph matching for spotting of hand-drawn symbols. We used SGMs in place of sub-graphs in a semi-definite programming based sub-graph matching to do the spotting. The experimental results validate our framework. We were able to spot hand-drawn symbols from 10 classes with 78.89% accuracy in a database of 76 document images and also were able to deal with confusingly similar symbol classes.