Active sensors for UAV autonomous navigation on Amazon region

R. N. Salles, H. F. de Campos Velho, E. H. Shiguemori
{"title":"Active sensors for UAV autonomous navigation on Amazon region","authors":"R. N. Salles, H. F. de Campos Velho, E. H. Shiguemori","doi":"10.1109/ICECCME55909.2022.9987780","DOIUrl":null,"url":null,"abstract":"This work is an additional exploration inspired by the results of an earlier study of the geo-localization problem over a densely forested region of the Brazilian Amazon forest. Light Detection and Ranging (LiDAR) data was post-processed from 3D cloud point format to 2D elevation images and template matching was used with normalized cross-correlation. Within a constrained search area it was possible to geo-localize the 2D patches of surface images on Interferometric Synthetic Aperture Radar (InSAR) elevation data. The transect 3D cloud point was transformed into a 12.5m resolution 2D surface image with the circular binning procedure, a resolution compatible with the Advanced Land Observation Satellite (ALOS) elevation maps used as reference. This application of template matching achieved 36m root mean square error, or about 4 pixels of error, over the LiDAR transect route. Position estimation is essential for autonomous navigation of aerial vehicles, and experiments with LiDAR data show potential for localization over densely forested regions, where Computer Vision methods using optical camera data may fail to acquire distinguishable features.","PeriodicalId":202568,"journal":{"name":"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCME55909.2022.9987780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work is an additional exploration inspired by the results of an earlier study of the geo-localization problem over a densely forested region of the Brazilian Amazon forest. Light Detection and Ranging (LiDAR) data was post-processed from 3D cloud point format to 2D elevation images and template matching was used with normalized cross-correlation. Within a constrained search area it was possible to geo-localize the 2D patches of surface images on Interferometric Synthetic Aperture Radar (InSAR) elevation data. The transect 3D cloud point was transformed into a 12.5m resolution 2D surface image with the circular binning procedure, a resolution compatible with the Advanced Land Observation Satellite (ALOS) elevation maps used as reference. This application of template matching achieved 36m root mean square error, or about 4 pixels of error, over the LiDAR transect route. Position estimation is essential for autonomous navigation of aerial vehicles, and experiments with LiDAR data show potential for localization over densely forested regions, where Computer Vision methods using optical camera data may fail to acquire distinguishable features.
亚马逊地区无人机自主导航的主动传感器
这项工作是一个额外的探索,灵感来自于对巴西亚马逊森林茂密地区的地理定位问题的早期研究结果。光探测与测距(LiDAR)数据由三维云点格式后处理为二维高程图像,采用归一化互相关模板匹配。在受限的搜索区域内,可以对干涉合成孔径雷达(InSAR)高程数据上的二维表面图像进行地理定位。将样条三维云点通过圆形分帧程序转换为12.5m分辨率的二维表面图像,该分辨率与参考的高级陆地观测卫星(ALOS)高程图兼容。该模板匹配应用在LiDAR样条路线上实现了36m均方根误差,误差约为4个像素。位置估计对于飞行器的自主导航至关重要,激光雷达数据的实验显示了在茂密森林地区进行定位的潜力,在这些地区,使用光学相机数据的计算机视觉方法可能无法获得可区分的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信