Using syntactic and confusion network structure for out-of-vocabulary word detection

Alex Marin, T. Kwiatkowski, Mari Ostendorf, Luke Zettlemoyer
{"title":"Using syntactic and confusion network structure for out-of-vocabulary word detection","authors":"Alex Marin, T. Kwiatkowski, Mari Ostendorf, Luke Zettlemoyer","doi":"10.1109/SLT.2012.6424215","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of detecting words that are out-of-vocabulary (OOV) for a speech recognition system to improve automatic speech translation. The detection system leverages confidence prediction techniques given a confusion network representation and parsing with OOV word tokens to identify spans associated with true OOV words. Working in a resource-constrained domain, we achieve OOV detection F-scores of 60-66 and reduce word error rate by 12% relative to the case where OOV words are not detected.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

This paper addresses the problem of detecting words that are out-of-vocabulary (OOV) for a speech recognition system to improve automatic speech translation. The detection system leverages confidence prediction techniques given a confusion network representation and parsing with OOV word tokens to identify spans associated with true OOV words. Working in a resource-constrained domain, we achieve OOV detection F-scores of 60-66 and reduce word error rate by 12% relative to the case where OOV words are not detected.
利用句法和混淆网络结构进行词汇外词检测
本文研究了语音识别系统的词汇外检测问题,以提高语音自动翻译水平。检测系统利用给出混淆网络表示的置信度预测技术,并使用OOV单词令牌进行解析,以识别与真正的OOV单词相关的范围。在资源受限的领域中,我们实现了OOV检测f -得分为60-66,相对于未检测到OOV单词的情况,我们将单词错误率降低了12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信