DOMAIN SPECIFIC KEY FEATURE EXTRACTION USING KNOWLEDGE GRAPH MINING

Mohit Kumar Barai, Subhasis Sanyal
{"title":"DOMAIN SPECIFIC KEY FEATURE EXTRACTION USING KNOWLEDGE GRAPH MINING","authors":"Mohit Kumar Barai, Subhasis Sanyal","doi":"10.22367/mcdm.2020.15.01","DOIUrl":null,"url":null,"abstract":"In the field of text mining, many novel feature extraction approaches have been propounded. The following research paper is based on a novel feature extraction algorithm. In this paper, to formulate this approach, a weighted graph mining has been used to ensure the effectiveness of the feature extraction and computational efficiency; only the most effective graphs representing the maximum number of triangles based on a predefined relational criterion have been considered. The proposed novel technique is an amalgamation of the relation between words surrounding an aspect of the product and the lexicon-based connection among those words, which creates a relational triangle. A maximum number of a triangle covering an element has been accounted as a prime feature. The proposed algorithm performs more than three times better than TF-IDF within a limited set of data in analysis based on domain-specific data. Keywords: feature extraction, natural language processing, product review, text processing, knowledge graph.","PeriodicalId":259350,"journal":{"name":"Multiple Criteria Decision Making","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiple Criteria Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22367/mcdm.2020.15.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the field of text mining, many novel feature extraction approaches have been propounded. The following research paper is based on a novel feature extraction algorithm. In this paper, to formulate this approach, a weighted graph mining has been used to ensure the effectiveness of the feature extraction and computational efficiency; only the most effective graphs representing the maximum number of triangles based on a predefined relational criterion have been considered. The proposed novel technique is an amalgamation of the relation between words surrounding an aspect of the product and the lexicon-based connection among those words, which creates a relational triangle. A maximum number of a triangle covering an element has been accounted as a prime feature. The proposed algorithm performs more than three times better than TF-IDF within a limited set of data in analysis based on domain-specific data. Keywords: feature extraction, natural language processing, product review, text processing, knowledge graph.
基于知识图挖掘的领域特定关键特征提取
在文本挖掘领域,已经提出了许多新的特征提取方法。下面的研究论文是基于一种新的特征提取算法。在本文中,为了实现该方法,为了保证特征提取的有效性和计算效率,采用了加权图挖掘;只考虑基于预定义的关系标准表示最大数量三角形的最有效图。提出的新技术是将围绕产品某个方面的单词之间的关系和这些单词之间基于词典的连接合并在一起,从而创建一个关系三角形。覆盖一个元素的三角形的最大数目被认为是素数特征。在基于特定领域数据的有限数据集分析中,该算法的性能比TF-IDF高3倍以上。关键词:特征提取,自然语言处理,产品评审,文本处理,知识图谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信