Routability Prediction using Deep Hierarchical Classification and Regression

D. Kim, Jakang Lee, Seokhyeong Kang
{"title":"Routability Prediction using Deep Hierarchical Classification and Regression","authors":"D. Kim, Jakang Lee, Seokhyeong Kang","doi":"10.23919/DATE56975.2023.10136974","DOIUrl":null,"url":null,"abstract":"Routability prediction can forecast the locations where design rule violations occur without routing and thus can speed up the design iterations by skipping the time-consuming routing tasks. This paper investigated (i) how to predict the routability on a continuous value and (ii) how to improve the prediction accuracy for the minority samples. We propose a deep hierarchical classification and regression (HCR) model that can detect hotspots with the number of violations. The hierarchical inference flow can prevent the model from overfitting to the majority samples in imbalanced data. In addition, we introduce a training method for the proposed HCR model that uses Bayesian optimization to find the ideal modeling parameters quickly and incorporates transfer learning for the regression model. We achieved an R2 score of 0.71 for the regression and increased the Fl score in the binary classification by 94% compared to previous work [6].","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10136974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Routability prediction can forecast the locations where design rule violations occur without routing and thus can speed up the design iterations by skipping the time-consuming routing tasks. This paper investigated (i) how to predict the routability on a continuous value and (ii) how to improve the prediction accuracy for the minority samples. We propose a deep hierarchical classification and regression (HCR) model that can detect hotspots with the number of violations. The hierarchical inference flow can prevent the model from overfitting to the majority samples in imbalanced data. In addition, we introduce a training method for the proposed HCR model that uses Bayesian optimization to find the ideal modeling parameters quickly and incorporates transfer learning for the regression model. We achieved an R2 score of 0.71 for the regression and increased the Fl score in the binary classification by 94% compared to previous work [6].
基于深度层次分类和回归的可达性预测
可达性预测可以在没有路由的情况下预测违反设计规则的位置,从而通过跳过耗时的路由任务来加快设计迭代。本文研究了如何在连续值上预测可达性,以及如何提高少数样本的预测精度。我们提出了一种深度层次分类和回归(HCR)模型,该模型可以通过违规数量来检测热点。分层推理流程可以防止模型对不平衡数据中大多数样本的过拟合。此外,我们还为所提出的HCR模型引入了一种训练方法,该方法使用贝叶斯优化快速找到理想的建模参数,并将迁移学习纳入回归模型。我们获得了回归的R2得分为0.71,与之前的工作相比,二元分类的Fl得分提高了94%[6]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信