A Platform for Federated Learning on the Edge: a Video Analysis Use Case

Alessio Catalfamo, A. Celesti, M. Fazio, Giovanni Randazzo, M. Villari
{"title":"A Platform for Federated Learning on the Edge: a Video Analysis Use Case","authors":"Alessio Catalfamo, A. Celesti, M. Fazio, Giovanni Randazzo, M. Villari","doi":"10.1109/ISCC55528.2022.9912968","DOIUrl":null,"url":null,"abstract":"Recently, both scientific and industrial communities have highlighted the importance to run Machine Learning (ML) applications on Edge computing closer to the end-user and to managed raw data, for many reasons including quality of service (QoS) and security. However, due to the limited computing, storage and network resources at the Edge, several ML algorithms have been re-designed to be deployed on Edge devices. In this paper, we want to explore in detail Edge Federation for supporting ML-based solutions. In particular, we present a new platform for the deployment and the management of complex services at the Edge. It provides an interface that allows us to arrange applications as a collection of interconnected lightweight loosely-coupled services (i.e., microservices) and enables their management across Federated Edge devices through the abstraction of the underlying clusters of physical devices. The proposed solution is validated by a use case related to video analysis in the morphological field.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, both scientific and industrial communities have highlighted the importance to run Machine Learning (ML) applications on Edge computing closer to the end-user and to managed raw data, for many reasons including quality of service (QoS) and security. However, due to the limited computing, storage and network resources at the Edge, several ML algorithms have been re-designed to be deployed on Edge devices. In this paper, we want to explore in detail Edge Federation for supporting ML-based solutions. In particular, we present a new platform for the deployment and the management of complex services at the Edge. It provides an interface that allows us to arrange applications as a collection of interconnected lightweight loosely-coupled services (i.e., microservices) and enables their management across Federated Edge devices through the abstraction of the underlying clusters of physical devices. The proposed solution is validated by a use case related to video analysis in the morphological field.
边缘联合学习平台:一个视频分析用例
最近,科学界和工业界都强调了在更靠近最终用户和管理原始数据的边缘计算上运行机器学习(ML)应用程序的重要性,原因有很多,包括服务质量(QoS)和安全性。然而,由于边缘设备的计算、存储和网络资源有限,一些机器学习算法被重新设计以部署在边缘设备上。在本文中,我们想详细探讨Edge Federation以支持基于ml的解决方案。特别地,我们提出了一个用于在Edge上部署和管理复杂服务的新平台。它提供了一个接口,允许我们将应用程序安排为相互连接的轻量级松耦合服务(即微服务)的集合,并通过抽象底层物理设备集群实现跨Federated Edge设备的管理。通过形态学领域的视频分析用例验证了所提出的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信