MobiEye

Jiachen Mao, Qing Yang, Ang Li, H. Li, Yiran Chen
{"title":"MobiEye","authors":"Jiachen Mao, Qing Yang, Ang Li, H. Li, Yiran Chen","doi":"10.1145/3316781.3317865","DOIUrl":null,"url":null,"abstract":"In recent years, machine learning research has largely shifted focus from the cloud to the edge. While the resulting algorithm-and hardware-level optimizations have enabled local execution for the majority of deep neural networks (DNNs) on edge devices, the sheer magnitude of DNNs associated with real-time video detection workloads has forced them to remain relegated to remote execution in the cloud. This problematic when combined with the strict latency requirements that are coupled with these workloads, and imposes a unique set of challenges not directly addressed in prior works. In this work, we design MobiEye, a cloud-based video detection system optimized for deployment in real-time mobile applications. MobiEye is able to achieve up to a 32% reduction in latency when compared to a conventional implementation of video detection system with only a marginal reduction in accuracy.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3317865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In recent years, machine learning research has largely shifted focus from the cloud to the edge. While the resulting algorithm-and hardware-level optimizations have enabled local execution for the majority of deep neural networks (DNNs) on edge devices, the sheer magnitude of DNNs associated with real-time video detection workloads has forced them to remain relegated to remote execution in the cloud. This problematic when combined with the strict latency requirements that are coupled with these workloads, and imposes a unique set of challenges not directly addressed in prior works. In this work, we design MobiEye, a cloud-based video detection system optimized for deployment in real-time mobile applications. MobiEye is able to achieve up to a 32% reduction in latency when compared to a conventional implementation of video detection system with only a marginal reduction in accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信