Huanzhuo Wu, Yunbin Shen, Máté Tömösközi, Giang T. Nguyen, F. Fitzek
{"title":"Demonstration of In-Network Audio Processing for Low-Latency Anomaly Detection in Smart Factories","authors":"Huanzhuo Wu, Yunbin Shen, Máté Tömösközi, Giang T. Nguyen, F. Fitzek","doi":"10.1109/CCNC49033.2022.9700506","DOIUrl":null,"url":null,"abstract":"This demonstration focuses on in-network computing as an enabler for low-latency Industrial Internet of Things (IIoT) applications, such as audio source separation for anomaly detection. By demonstrating a specific industrial application, we show that our method Progressive ICA (pICA), improves accuracy and reduces overall service latency progressively. The idea is to parallelize data transmission and processing along a multi-hop path consisting of in-network computing nodes. The audience can experience the benefits of the novel concept of in-network computing by interacting with the demonstration remotely via the Internet or in person.","PeriodicalId":269305,"journal":{"name":"2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC49033.2022.9700506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This demonstration focuses on in-network computing as an enabler for low-latency Industrial Internet of Things (IIoT) applications, such as audio source separation for anomaly detection. By demonstrating a specific industrial application, we show that our method Progressive ICA (pICA), improves accuracy and reduces overall service latency progressively. The idea is to parallelize data transmission and processing along a multi-hop path consisting of in-network computing nodes. The audience can experience the benefits of the novel concept of in-network computing by interacting with the demonstration remotely via the Internet or in person.