Hash table in massively parallel systems

I. Yen, F. Bastani
{"title":"Hash table in massively parallel systems","authors":"I. Yen, F. Bastani","doi":"10.1109/IPPS.1992.222988","DOIUrl":null,"url":null,"abstract":"The authors look at the performance and new collision resolution strategies for hash tables in massively parallel systems. The results show that using a hash table with linear probing yields O(logN) time performance for handling M accesses by N processors when the load factor of the table is 50%, where N is the size of the hash table. This is better than the performance of using sorted arrays. Two phase hashing gives an average time complexity O(logN) for M simultaneous accesses to a hash table of size N even when the table has 100% load. Simulation results also show that hypercube hashing significantly outperforms linear probing and double hashing.<<ETX>>","PeriodicalId":340070,"journal":{"name":"Proceedings Sixth International Parallel Processing Symposium","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1992.222988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The authors look at the performance and new collision resolution strategies for hash tables in massively parallel systems. The results show that using a hash table with linear probing yields O(logN) time performance for handling M accesses by N processors when the load factor of the table is 50%, where N is the size of the hash table. This is better than the performance of using sorted arrays. Two phase hashing gives an average time complexity O(logN) for M simultaneous accesses to a hash table of size N even when the table has 100% load. Simulation results also show that hypercube hashing significantly outperforms linear probing and double hashing.<>
大规模并行系统中的哈希表
作者研究了大规模并行系统中哈希表的性能和新的冲突解决策略。结果表明,当表的负载因子为50%时,使用具有线性探测的哈希表处理N个处理器的M次访问产生O(logN)时间性能,其中N是哈希表的大小。这比使用排序数组的性能要好。对于同时访问大小为N的哈希表的M次访问,即使表具有100%的负载,两阶段哈希的平均时间复杂度为O(logN)。仿真结果还表明,超立方体哈希算法明显优于线性探测和双哈希算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信