{"title":"Hash table in massively parallel systems","authors":"I. Yen, F. Bastani","doi":"10.1109/IPPS.1992.222988","DOIUrl":null,"url":null,"abstract":"The authors look at the performance and new collision resolution strategies for hash tables in massively parallel systems. The results show that using a hash table with linear probing yields O(logN) time performance for handling M accesses by N processors when the load factor of the table is 50%, where N is the size of the hash table. This is better than the performance of using sorted arrays. Two phase hashing gives an average time complexity O(logN) for M simultaneous accesses to a hash table of size N even when the table has 100% load. Simulation results also show that hypercube hashing significantly outperforms linear probing and double hashing.<<ETX>>","PeriodicalId":340070,"journal":{"name":"Proceedings Sixth International Parallel Processing Symposium","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1992.222988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The authors look at the performance and new collision resolution strategies for hash tables in massively parallel systems. The results show that using a hash table with linear probing yields O(logN) time performance for handling M accesses by N processors when the load factor of the table is 50%, where N is the size of the hash table. This is better than the performance of using sorted arrays. Two phase hashing gives an average time complexity O(logN) for M simultaneous accesses to a hash table of size N even when the table has 100% load. Simulation results also show that hypercube hashing significantly outperforms linear probing and double hashing.<>