Performance Evaluation of AI Authentication Device Implemented on SAKURA-G

Y. Nozaki, M. Yoshikawa
{"title":"Performance Evaluation of AI Authentication Device Implemented on SAKURA-G","authors":"Y. Nozaki, M. Yoshikawa","doi":"10.1109/ICASI52993.2021.9568419","DOIUrl":null,"url":null,"abstract":"In recent years, AI security issues have been reported. To ensure the authenticity of AI devices, the neural network physically unclonable function (NN PUF) has been proposed. To generate the unique ID for authentication, the NN PUF extracts the variance of calculation time in AI inference. The previous study evaluates the NN PUF by 65nm field programmable gate array (FPGA); however, no evaluation by other process has been performed. As the PUF extracts small variation in LSI, PUF performance may change in different processes, so the evaluation in various processes is important. Therefore, the present study evaluates the NN PUF implemented into 45nm FPGA on SAKURA-G.","PeriodicalId":103254,"journal":{"name":"2021 7th International Conference on Applied System Innovation (ICASI)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI52993.2021.9568419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, AI security issues have been reported. To ensure the authenticity of AI devices, the neural network physically unclonable function (NN PUF) has been proposed. To generate the unique ID for authentication, the NN PUF extracts the variance of calculation time in AI inference. The previous study evaluates the NN PUF by 65nm field programmable gate array (FPGA); however, no evaluation by other process has been performed. As the PUF extracts small variation in LSI, PUF performance may change in different processes, so the evaluation in various processes is important. Therefore, the present study evaluates the NN PUF implemented into 45nm FPGA on SAKURA-G.
基于SAKURA-G的AI认证设备性能评估
近年来,人工智能安全问题不断被报道。为了保证人工智能设备的真实性,提出了神经网络物理不可克隆函数(NN PUF)。神经网络PUF提取人工智能推理中计算时间的方差,生成唯一的身份验证ID。先前的研究采用65nm现场可编程门阵列(FPGA)对神经网络PUF进行了评估;但是,没有执行其他过程的评估。由于PUF在LSI中提取的变化较小,因此PUF性能在不同工艺中可能会发生变化,因此对不同工艺的PUF性能进行评估非常重要。因此,本研究评估了在SAKURA-G上45nm FPGA上实现的神经网络PUF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信