Discovering the learned rules of dress collocation inside neural network mechanism

Yi-Chun Lin, Chao-I Tuan, C. Liou
{"title":"Discovering the learned rules of dress collocation inside neural network mechanism","authors":"Yi-Chun Lin, Chao-I Tuan, C. Liou","doi":"10.1109/CCMB.2013.6609159","DOIUrl":null,"url":null,"abstract":"This study is to capture the implicit rules of dress collocation by means of neural network modelling and analyses of the trained hidden structure. First, a multi-layer network model is adapted for training, where the input data are features designed by experiments to represent the various dressing styles of our selected nine fashion brands. Then we introduce a technique to display the inner categorization of the trained network model by a tree structure. From this, we discover the hidden rules of neural network models, and reveal the potential of local modification and correction without re-training the whole model.","PeriodicalId":395025,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCMB.2013.6609159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study is to capture the implicit rules of dress collocation by means of neural network modelling and analyses of the trained hidden structure. First, a multi-layer network model is adapted for training, where the input data are features designed by experiments to represent the various dressing styles of our selected nine fashion brands. Then we introduce a technique to display the inner categorization of the trained network model by a tree structure. From this, we discover the hidden rules of neural network models, and reveal the potential of local modification and correction without re-training the whole model.
发现神经网络机制中习得的服装搭配规律
本研究通过神经网络建模和对训练好的隐含结构的分析,来捕捉服装搭配的隐含规则。首先,采用多层网络模型进行训练,其中输入的数据是通过实验设计的特征,代表我们选择的9个时尚品牌的各种穿衣风格。然后,我们介绍了一种用树形结构来显示训练后的网络模型的内部分类的技术。由此,我们发现了神经网络模型的隐藏规则,揭示了无需重新训练整个模型即可进行局部修改和校正的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信