A Supervised Learning Approach to Adaptation in Practical MIMO-OFDM Wireless Systems

R. Daniels, C. Caramanis, R. Heath
{"title":"A Supervised Learning Approach to Adaptation in Practical MIMO-OFDM Wireless Systems","authors":"R. Daniels, C. Caramanis, R. Heath","doi":"10.1109/GLOCOM.2008.ECP.878","DOIUrl":null,"url":null,"abstract":"MIMO-OFDM wireless systems require adaptive modulation and coding based on channel state information (CSI) to maximize throughput in changing wireless channels. Traditional adaptive modulation and coding attempts to predict the best rate available by estimating the packet error rate for each modulation and coding scheme (MCS) by using CSI, which has shown to be challenging. This paper considers supervised learning with the k-nearest neighbor (k-NN) algorithm as a new framework for adaptive modulation and coding. Practical k-NN operation is enabled through feature space dimensionality reduction using subcarrier ordering techniques based on postprocessing SNR. Simulation results of an IEEE 802.11n draft-compatible physical layer in flat and frequency selective wireless channels shows the k-NN with an ordered subcarrier feature space performs near ideal adaptation under packet error rate constraints.","PeriodicalId":297815,"journal":{"name":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2008.ECP.878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

MIMO-OFDM wireless systems require adaptive modulation and coding based on channel state information (CSI) to maximize throughput in changing wireless channels. Traditional adaptive modulation and coding attempts to predict the best rate available by estimating the packet error rate for each modulation and coding scheme (MCS) by using CSI, which has shown to be challenging. This paper considers supervised learning with the k-nearest neighbor (k-NN) algorithm as a new framework for adaptive modulation and coding. Practical k-NN operation is enabled through feature space dimensionality reduction using subcarrier ordering techniques based on postprocessing SNR. Simulation results of an IEEE 802.11n draft-compatible physical layer in flat and frequency selective wireless channels shows the k-NN with an ordered subcarrier feature space performs near ideal adaptation under packet error rate constraints.
实用MIMO-OFDM无线系统的监督学习自适应方法
MIMO-OFDM无线系统需要基于信道状态信息(CSI)的自适应调制和编码,以在不断变化的无线信道中实现最大的吞吐量。传统的自适应调制和编码试图通过使用CSI来估计每种调制和编码方案(MCS)的包错误率来预测最佳可用速率,这已被证明是具有挑战性的。本文提出了基于k近邻(k-NN)算法的监督学习作为一种新的自适应调制和编码框架。实际的k-NN操作是通过基于后处理信噪比的子载波排序技术的特征空间降维实现的。对IEEE 802.11n草案兼容物理层在平面和频率选择无线信道中的仿真结果表明,具有有序子载波特征空间的k-NN在包错误率约束下具有接近理想的自适应性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信