State estimation using adaptive linear combiner and multilayer neural network

A. Kanekar, A. Feliachi
{"title":"State estimation using adaptive linear combiner and multilayer neural network","authors":"A. Kanekar, A. Feliachi","doi":"10.1109/ICSYSE.1991.161110","DOIUrl":null,"url":null,"abstract":"The state estimation problem using artificial neural networks is considered. Stochastic systems are analyzed. The neural networks used are the adaptive linear combiner (ALC) and a multilayer network. An approach to train the network based on several Kalman filter solutions whose average is used as the desired output is developed. The performance of the training algorithms gives state estimates when measurement are presented. Examples are given for cases of high and low signal-to-noise ratio to illustrate the proposed approach.<<ETX>>","PeriodicalId":250037,"journal":{"name":"IEEE 1991 International Conference on Systems Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 1991 International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1991.161110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The state estimation problem using artificial neural networks is considered. Stochastic systems are analyzed. The neural networks used are the adaptive linear combiner (ALC) and a multilayer network. An approach to train the network based on several Kalman filter solutions whose average is used as the desired output is developed. The performance of the training algorithms gives state estimates when measurement are presented. Examples are given for cases of high and low signal-to-noise ratio to illustrate the proposed approach.<>
基于自适应线性组合器和多层神经网络的状态估计
研究了利用人工神经网络进行状态估计的问题。对随机系统进行分析。使用的神经网络是自适应线性组合(ALC)和多层网络。提出了一种基于多个卡尔曼滤波解的网络训练方法,这些卡尔曼滤波解的平均值作为期望输出。训练算法的性能给出了测量时的状态估计。给出了高信噪比和低信噪比的例子来说明所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信