Automating Privilege Escalation with Deep Reinforcement Learning

Kalle Kujanpää, Willie Victor, A. Ilin
{"title":"Automating Privilege Escalation with Deep Reinforcement Learning","authors":"Kalle Kujanpää, Willie Victor, A. Ilin","doi":"10.1145/3474369.3486877","DOIUrl":null,"url":null,"abstract":"AI-based defensive solutions are necessary to defend networks and information assets against intelligent automated attacks. Gathering enough realistic data for training machine learning-based defenses is a significant practical challenge. An intelligent red teaming agent capable of performing realistic attacks can alleviate this problem. However, there is little scientific evidence demonstrating the feasibility of fully automated attacks using machine learning. In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents. We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation. Our results show that the autonomous agent can escalate privileges in a Windows~7 environment using a wide variety of different techniques depending on the environment configuration it encounters. Hence, our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.","PeriodicalId":411057,"journal":{"name":"Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474369.3486877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

AI-based defensive solutions are necessary to defend networks and information assets against intelligent automated attacks. Gathering enough realistic data for training machine learning-based defenses is a significant practical challenge. An intelligent red teaming agent capable of performing realistic attacks can alleviate this problem. However, there is little scientific evidence demonstrating the feasibility of fully automated attacks using machine learning. In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents. We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation. Our results show that the autonomous agent can escalate privileges in a Windows~7 environment using a wide variety of different techniques depending on the environment configuration it encounters. Hence, our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
使用深度强化学习自动化特权升级
基于人工智能的防御方案是保护网络和信息资产免受智能自动化攻击的必要手段。收集足够的真实数据来训练基于机器学习的防御是一个重大的实际挑战。一个能够执行真实攻击的智能红队代理可以缓解这个问题。然而,几乎没有科学证据证明使用机器学习进行全自动攻击的可行性。在这项工作中,我们举例说明了恶意行为者使用深度强化学习来训练自动代理的潜在威胁。我们提出了一个代理,它使用最先进的强化学习算法来执行本地特权升级。我们的结果表明,自主代理可以根据遇到的环境配置使用各种不同的技术来升级Windows~7环境中的特权。因此,我们的代理可用于生成真实的攻击传感器数据,用于训练和评估入侵检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信