Background modeling and subtraction of dynamic scenes

Antoine Monnet, Anurag Mittal, N. Paragios, Visvanathan Ramesh
{"title":"Background modeling and subtraction of dynamic scenes","authors":"Antoine Monnet, Anurag Mittal, N. Paragios, Visvanathan Ramesh","doi":"10.1109/ICCV.2003.1238641","DOIUrl":null,"url":null,"abstract":"Background modeling and subtraction is a core component in motion analysis. The central idea behind such module is to create a probabilistic representation of the static scene that is compared with the current input to perform subtraction. Such approach is efficient when the scene to be modeled refers to a static structure with limited perturbation. In this paper, we address the problem of modeling dynamic scenes where the assumption of a static background is not valid. Waving trees, beaches, escalators, natural scenes with rain or snow are examples. Inspired by the work proposed by Doretto et al. (2003), we propose an on-line auto-regressive model to capture and predict the behavior of such scenes. Towards detection of events we introduce a new metric that is based on a state-driven comparison between the prediction and the actual frame. Promising results demonstrate the potentials of the proposed framework.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"481","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 481

Abstract

Background modeling and subtraction is a core component in motion analysis. The central idea behind such module is to create a probabilistic representation of the static scene that is compared with the current input to perform subtraction. Such approach is efficient when the scene to be modeled refers to a static structure with limited perturbation. In this paper, we address the problem of modeling dynamic scenes where the assumption of a static background is not valid. Waving trees, beaches, escalators, natural scenes with rain or snow are examples. Inspired by the work proposed by Doretto et al. (2003), we propose an on-line auto-regressive model to capture and predict the behavior of such scenes. Towards detection of events we introduce a new metric that is based on a state-driven comparison between the prediction and the actual frame. Promising results demonstrate the potentials of the proposed framework.
动态场景的背景建模和减法
背景建模和减法是运动分析的核心组成部分。该模块背后的核心思想是创建静态场景的概率表示,将其与当前输入进行比较以执行减法。当要建模的场景是摄动有限的静态结构时,这种方法是有效的。在本文中,我们解决了动态场景建模的问题,其中静态背景的假设是无效的。摇曳的树木、海滩、自动扶梯、下雨或下雪的自然景观都是例子。受Doretto等人(2003)提出的工作的启发,我们提出了一个在线自回归模型来捕获和预测这些场景的行为。为了检测事件,我们引入了一种新的度量,该度量基于预测和实际帧之间的状态驱动比较。令人鼓舞的结果证明了所提出框架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信