{"title":"Finger flexion imagery: EEG classification through physiologically-inspired feature extraction and hierarchical voting","authors":"Daniel Furman, Roi Reichart, H. Pratt","doi":"10.1109/IWW-BCI.2016.7457445","DOIUrl":null,"url":null,"abstract":"Accurate electroencephalography (EEG) classification of finger flexion imagery would endow non-invasive brainmachine interfaces (BMIs) with a much richer control repertoire. Traditionally, it has been assumed that non-invasive methods lack the resolution required for success on such a fine discrimination task. In this study, we challenged this assumption. EEG was acquired while subjects imagined performing individual and bimanual finger flexions. A new method of spatiotemporal and spectral feature extraction was applied, and multi-class support vector machine (SVM) classifiers were trained. Predictions and probabilities then served as inputs to a novel voting scheme, which output the system decision. The present approach achieved a mean population (n=15) accuracy of 30.86±1.76%, nearly twice the chance guessing level (16.71±1.68%) for the six-class task evaluated. Finger imagery is thus shown to be classifiable through EEG analysis alone.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"11 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Accurate electroencephalography (EEG) classification of finger flexion imagery would endow non-invasive brainmachine interfaces (BMIs) with a much richer control repertoire. Traditionally, it has been assumed that non-invasive methods lack the resolution required for success on such a fine discrimination task. In this study, we challenged this assumption. EEG was acquired while subjects imagined performing individual and bimanual finger flexions. A new method of spatiotemporal and spectral feature extraction was applied, and multi-class support vector machine (SVM) classifiers were trained. Predictions and probabilities then served as inputs to a novel voting scheme, which output the system decision. The present approach achieved a mean population (n=15) accuracy of 30.86±1.76%, nearly twice the chance guessing level (16.71±1.68%) for the six-class task evaluated. Finger imagery is thus shown to be classifiable through EEG analysis alone.