Predicting Blood Glucose Dynamics with Multi-time-series Deep Learning

Weixi Gu, Zimu Zhou, Yuxun Zhou, M. He, Han Zou, Lin Zhang
{"title":"Predicting Blood Glucose Dynamics with Multi-time-series Deep Learning","authors":"Weixi Gu, Zimu Zhou, Yuxun Zhou, M. He, Han Zou, Lin Zhang","doi":"10.1145/3131672.3136965","DOIUrl":null,"url":null,"abstract":"Predicting blood glucose dynamics is vital for people to take preventive measures in time against health risks. Previous efforts adopt handcrafted features and design prediction models for each person, which result in low accuracy due to ineffective feature representation and the limited training data. This work proposes MT-LSTM, a multi-time-series deep LSTM model for accurate and efficient blood glucose concentration prediction. MT-LSTM automatically learns feature representations and temporal dependencies of blood glucose dynamics by jointly sharing data among multiple users and utilizes an individual learning layer for personalized prediction. Evaluations on 112 users demonstrate that MT-LSTM significant outperform conventional predictive regression models.","PeriodicalId":424262,"journal":{"name":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131672.3136965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Predicting blood glucose dynamics is vital for people to take preventive measures in time against health risks. Previous efforts adopt handcrafted features and design prediction models for each person, which result in low accuracy due to ineffective feature representation and the limited training data. This work proposes MT-LSTM, a multi-time-series deep LSTM model for accurate and efficient blood glucose concentration prediction. MT-LSTM automatically learns feature representations and temporal dependencies of blood glucose dynamics by jointly sharing data among multiple users and utilizes an individual learning layer for personalized prediction. Evaluations on 112 users demonstrate that MT-LSTM significant outperform conventional predictive regression models.
用多时间序列深度学习预测血糖动态
预测血糖动态对人们及时采取预防措施防范健康风险至关重要。以往的研究都是采用手工特征和为每个人设计预测模型,由于特征表示不有效和训练数据有限,导致预测精度较低。本文提出了一种多时间序列深度LSTM模型MT-LSTM,用于准确高效的血糖浓度预测。MT-LSTM通过在多个用户之间联合共享数据,自动学习血糖动态的特征表示和时间依赖关系,并利用单个学习层进行个性化预测。对112个用户的评估表明,MT-LSTM显著优于传统的预测回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信