The Application of Support Vector Machine to Estimate Synthetic Shear Sonic Log

Maman Rohaman, M.T., I. S. Winardhi, Y. Rizkianto
{"title":"The Application of Support Vector Machine to Estimate Synthetic Shear Sonic Log","authors":"Maman Rohaman, M.T., I. S. Winardhi, Y. Rizkianto","doi":"10.31315/jmtg.v13i3.9398","DOIUrl":null,"url":null,"abstract":"Abstract – Rock physics modelling is commonly applied to characterize the subsurface. Sonic log provides the elastic properties in advanced petrophysics modelling or rock physics modelling. Although it is very important, to obtain shear sonic measurement results is very expensive. Therefore, empirical and artificial intelligence allow some solutions to estimate synthetic shear sonic log. This study applicate PCA as feature selection and SVM as the regressor with TAF as the target interval for well NEGF1P. The results of feature selection are GR, DTC, and MSF log as selected features. GS optimizes the SVM kernel parameter using selected features. The best parameters for each kernel (linear and rbf) and selected feature are the input to estimate synthetic shear sonic log. The estimation result using linear kernel has R2 0.845 and root mean square error (RMSE) 15.132 and using rbf kernel has R2 0.886 and RMSE 12.989. The estimation results construe that rbf kernel estimates the synthetic sonic log with more precision than the linear kernel and indicates the linear relation between the estimated and origin log. The three other wells apply SMV with rbf kernel best parameters and selected features to estimation the synthetic shear sonic in similar interval and younger interval (GUF).","PeriodicalId":377085,"journal":{"name":"JURNAL ILMIAH MTG","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JURNAL ILMIAH MTG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31315/jmtg.v13i3.9398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract – Rock physics modelling is commonly applied to characterize the subsurface. Sonic log provides the elastic properties in advanced petrophysics modelling or rock physics modelling. Although it is very important, to obtain shear sonic measurement results is very expensive. Therefore, empirical and artificial intelligence allow some solutions to estimate synthetic shear sonic log. This study applicate PCA as feature selection and SVM as the regressor with TAF as the target interval for well NEGF1P. The results of feature selection are GR, DTC, and MSF log as selected features. GS optimizes the SVM kernel parameter using selected features. The best parameters for each kernel (linear and rbf) and selected feature are the input to estimate synthetic shear sonic log. The estimation result using linear kernel has R2 0.845 and root mean square error (RMSE) 15.132 and using rbf kernel has R2 0.886 and RMSE 12.989. The estimation results construe that rbf kernel estimates the synthetic sonic log with more precision than the linear kernel and indicates the linear relation between the estimated and origin log. The three other wells apply SMV with rbf kernel best parameters and selected features to estimation the synthetic shear sonic in similar interval and younger interval (GUF).
支持向量机在合成剪切声波测井估计中的应用
摘要:岩石物理建模通常用于描述地下特征。声波测井为高级岩石物理建模或岩石物理建模提供了弹性特性。虽然剪切声测量非常重要,但获得剪切声测量结果是非常昂贵的。因此,经验和人工智能为估计合成剪切声波测井提供了一些解决方案。本研究采用PCA作为特征选择,SVM作为回归量,TAF作为目标区间对NEGF1P井进行分析。特征选择的结果是GR、DTC和MSF日志作为选择的特征。GS使用选定的特征优化SVM核参数。每个核(线性和rbf)的最佳参数和所选特征作为估计合成剪切声波测井的输入。使用线性核的估计结果R2为0.845,均方根误差(RMSE)为15.132;使用rbf核的估计结果R2为0.886,RMSE为12.989。结果表明,相对于线性核函数,rbf核函数对合成声波测井曲线的估计精度更高,并表明估计结果与原始测井曲线呈线性关系。另外3口井采用带rbf核最优参数和所选特征的SMV方法估计相似层段和更年轻层段(GUF)的合成剪切声波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信