Performance evaluation of simplified matching algorithms for RF fingerprinting in LTE network

Yanan Han, Huan Ma, Lijun Zhang, L. Chen
{"title":"Performance evaluation of simplified matching algorithms for RF fingerprinting in LTE network","authors":"Yanan Han, Huan Ma, Lijun Zhang, L. Chen","doi":"10.1109/ICASID.2015.7405654","DOIUrl":null,"url":null,"abstract":"Performance evaluation of fingerprinting using simplified statistical matching algorithm with two similarity metrics is presented. The collection of RF information can be automatically accomplished with the minimization of drive testing (MDT) in long term evolution (LTE) networks. In the case of non-ideal cell detection, the proposed algorithm greatly decreases the calculation of RF information and the time of position estimation. We employed the proposed algorithm in LTE cellular networks including rural, urban and Hetnet cases. The results show that the proposed algorithm reduce by 76%, 34% and 70% in computation time in rural, urban and Hetnet case respectively, while the positioning errors (PEs) have been improved in comparison with the classic KNN algorithm.","PeriodicalId":403184,"journal":{"name":"2015 IEEE 9th International Conference on Anti-counterfeiting, Security, and Identification (ASID)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 9th International Conference on Anti-counterfeiting, Security, and Identification (ASID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2015.7405654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Performance evaluation of fingerprinting using simplified statistical matching algorithm with two similarity metrics is presented. The collection of RF information can be automatically accomplished with the minimization of drive testing (MDT) in long term evolution (LTE) networks. In the case of non-ideal cell detection, the proposed algorithm greatly decreases the calculation of RF information and the time of position estimation. We employed the proposed algorithm in LTE cellular networks including rural, urban and Hetnet cases. The results show that the proposed algorithm reduce by 76%, 34% and 70% in computation time in rural, urban and Hetnet case respectively, while the positioning errors (PEs) have been improved in comparison with the classic KNN algorithm.
LTE网络中射频指纹识别简化匹配算法的性能评价
提出了一种基于两个相似度指标的简化统计匹配算法对指纹识别性能进行评价。在长期演进(LTE)网络中,射频信息的收集可以通过最小化驱动测试(MDT)自动完成。在非理想小区检测情况下,该算法大大减少了射频信息的计算量和位置估计时间。我们将提出的算法应用于LTE蜂窝网络,包括农村、城市和Hetnet案例。结果表明,该算法在农村、城市和Hetnet情况下的计算时间分别减少了76%、34%和70%,定位误差(PEs)比经典KNN算法有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信