Experimental studies on minimal representation multisensor fusion

R. Joshi, A. Sanderson
{"title":"Experimental studies on minimal representation multisensor fusion","authors":"R. Joshi, A. Sanderson","doi":"10.1109/ICAR.1997.620244","DOIUrl":null,"url":null,"abstract":"We describe laboratory experiments, in which tactile data obtained from the finger-tips of a robot hand, while it is holding an object in front of a calibrated camera, is fused with the vision data from the camera, to determine the object identity, pose, and the touch and vision data correspondences. The touch data is incomplete due to required hand configurations, while nearly half of the vision data are spurious due to the presence of the hand in the image. Using either sensor alone results in ambiguous or incorrect interpretations. A minimal representation size framework is used to formulate the multisensor fusion problem, and can automatically select the object class, correspondence (data subsamples), and pose parameters. The experiments demonstrate that it consistently finds the correct interpretation, and is a practical method for multisensor fusion and model selection.","PeriodicalId":228876,"journal":{"name":"1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 8th International Conference on Advanced Robotics. Proceedings. ICAR'97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.1997.620244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe laboratory experiments, in which tactile data obtained from the finger-tips of a robot hand, while it is holding an object in front of a calibrated camera, is fused with the vision data from the camera, to determine the object identity, pose, and the touch and vision data correspondences. The touch data is incomplete due to required hand configurations, while nearly half of the vision data are spurious due to the presence of the hand in the image. Using either sensor alone results in ambiguous or incorrect interpretations. A minimal representation size framework is used to formulate the multisensor fusion problem, and can automatically select the object class, correspondence (data subsamples), and pose parameters. The experiments demonstrate that it consistently finds the correct interpretation, and is a practical method for multisensor fusion and model selection.
最小表示多传感器融合实验研究
我们描述了实验室实验,其中从机器人手的指尖获得的触觉数据,当它在校准的相机前拿着物体时,与来自相机的视觉数据融合,以确定物体的身份,姿势以及触摸和视觉数据的对应关系。由于需要手的配置,触摸数据是不完整的,而由于图像中存在手,近一半的视觉数据是虚假的。单独使用任一传感器都会导致歧义或不正确的解释。采用最小表示尺寸框架来表述多传感器融合问题,并能自动选择目标类别、对应关系(数据子样本)和姿态参数。实验结果表明,该方法能较好地找到正确的解释,是一种实用的多传感器融合和模型选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信