{"title":"Multiclass spectral clustering","authors":"Stella X. Yu, Jianbo Shi","doi":"10.1109/ICCV.2003.1238361","DOIUrl":null,"url":null,"abstract":"We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigen-decomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We then solve an optimal discretization problem, which seeks a discrete solution closest to the continuous optima. The discretization is efficiently computed in an iterative fashion using singular value decomposition and nonmaximum suppression. The resulting discrete solutions are nearly global-optimal. Our method is robust to random initialization and converges faster than other clustering methods. Experiments on real image segmentation are reported.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1056","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1056
Abstract
We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigen-decomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We then solve an optimal discretization problem, which seeks a discrete solution closest to the continuous optima. The discretization is efficiently computed in an iterative fashion using singular value decomposition and nonmaximum suppression. The resulting discrete solutions are nearly global-optimal. Our method is robust to random initialization and converges faster than other clustering methods. Experiments on real image segmentation are reported.