Autonomous library for evolutionary algorithms

M. Sprogar
{"title":"Autonomous library for evolutionary algorithms","authors":"M. Sprogar","doi":"10.1109/MELCON.2004.1346999","DOIUrl":null,"url":null,"abstract":"The implementation of an evolutionary algorithm is always tweaked to a certain problem and is therefore not portable to the other problem domains. This is mainly because of the sensitive fitness function that ties the evolution to the problem. In order to create a general EA library, we avoided the regular fitness evaluation and use a more natural implicit fitness concept. We created an independent EA library that needs minimal programming to create solutions for different problem areas. The library engine evolves the two types of individuals, which holds the discovered knowledge, and uses a non-standard implicit fitness evaluation in a co-evolving environment. This library was used to create an EA program for the induction of decision trees.","PeriodicalId":164818,"journal":{"name":"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (IEEE Cat. No.04CH37521)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2004.1346999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of an evolutionary algorithm is always tweaked to a certain problem and is therefore not portable to the other problem domains. This is mainly because of the sensitive fitness function that ties the evolution to the problem. In order to create a general EA library, we avoided the regular fitness evaluation and use a more natural implicit fitness concept. We created an independent EA library that needs minimal programming to create solutions for different problem areas. The library engine evolves the two types of individuals, which holds the discovered knowledge, and uses a non-standard implicit fitness evaluation in a co-evolving environment. This library was used to create an EA program for the induction of decision trees.
自主进化算法库
进化算法的实现总是针对某个问题进行调整,因此不能移植到其他问题领域。这主要是因为将进化与问题联系起来的敏感适应度函数。为了创建一个通用的EA库,我们避免了常规的适应度评估,使用了更自然的隐式适应度概念。我们创建了一个独立的EA库,它需要最少的编程来为不同的问题领域创建解决方案。库引擎进化出两种类型的个体,这两种个体持有发现的知识,并在共同进化的环境中使用非标准的隐式适应度评估。该库用于创建决策树归纳的EA程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信