Transactional Memory: Architectural Support For Lock-free Data Structures

Maurice Herlihy, J. E. B. Moss
{"title":"Transactional Memory: Architectural Support For Lock-free Data Structures","authors":"Maurice Herlihy, J. E. B. Moss","doi":"10.1109/ISCA.1993.698569","DOIUrl":null,"url":null,"abstract":"A shared data structure is lock-free if its operations do not require mutual exclusion. If one process is interrupted in the middle of an operation, other processes will not be prevented from operating on that object. In highly concurrent systems, lock-free data structures avoid common problems associated with conventional locking techniques, including priority inversion, convoying, and difficulty of avoiding deadlock. This paper introduces transactional memory, a new multiprocessor architecture intended to make lock-free synchronization as efficient (and easy to use) as conventional techniques based on mutual exclusion. Transactional memory allows programmers to define customized read-modify-write operations that apply to multiple, independently-chosen words of memory. It is implemented by straightforward extensions to any multiprocessor cache-coherence protocol. Simulation results show that transactional memory matches or outperforms the best known locking techniques for simple benchmarks, even in the absence of priority inversion, convoying, and deadlock.","PeriodicalId":410022,"journal":{"name":"Proceedings of the 20th Annual International Symposium on Computer Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2560","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCA.1993.698569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2560

Abstract

A shared data structure is lock-free if its operations do not require mutual exclusion. If one process is interrupted in the middle of an operation, other processes will not be prevented from operating on that object. In highly concurrent systems, lock-free data structures avoid common problems associated with conventional locking techniques, including priority inversion, convoying, and difficulty of avoiding deadlock. This paper introduces transactional memory, a new multiprocessor architecture intended to make lock-free synchronization as efficient (and easy to use) as conventional techniques based on mutual exclusion. Transactional memory allows programmers to define customized read-modify-write operations that apply to multiple, independently-chosen words of memory. It is implemented by straightforward extensions to any multiprocessor cache-coherence protocol. Simulation results show that transactional memory matches or outperforms the best known locking techniques for simple benchmarks, even in the absence of priority inversion, convoying, and deadlock.
事务性内存:无锁数据结构的体系结构支持
如果一个共享数据结构的操作不需要互斥,那么它就是无锁的。如果一个进程在操作过程中被中断,其他进程不会被阻止对该对象进行操作。在高度并发的系统中,无锁数据结构避免了与传统锁技术相关的常见问题,包括优先级反转、传输和难以避免死锁。本文介绍了事务性内存,这是一种新的多处理器架构,旨在使无锁同步与基于互斥的传统技术一样高效(且易于使用)。事务性内存允许程序员定义自定义的读-修改-写操作,这些操作应用于多个独立选择的内存单词。它是通过对任何多处理器缓存一致性协议的直接扩展实现的。模拟结果表明,即使在没有优先级反转、传输和死锁的情况下,事务性内存在简单基准测试中也可以匹配或优于最知名的锁定技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信