Query based learning in a multilayered perceptron in the presence of data jitter

Seho Oh, R. Marks, M. El-Sharkawi
{"title":"Query based learning in a multilayered perceptron in the presence of data jitter","authors":"Seho Oh, R. Marks, M. El-Sharkawi","doi":"10.1109/ANN.1991.213500","DOIUrl":null,"url":null,"abstract":"Stochastically perturbed feature data is said to be jittered. Jittered data has a convolutional smoothing effect in the classification (or regression) space. Parametric knowledge of the jitter can be used to perturb the training cost function of the neural network so that more efficient training can be performed. The improvement is more striking when the addended cost function is used in a query based learning procedure.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Stochastically perturbed feature data is said to be jittered. Jittered data has a convolutional smoothing effect in the classification (or regression) space. Parametric knowledge of the jitter can be used to perturb the training cost function of the neural network so that more efficient training can be performed. The improvement is more striking when the addended cost function is used in a query based learning procedure.<>
存在数据抖动的多层感知器中基于查询的学习
随机扰动的特征数据被称为抖动。抖动数据在分类(或回归)空间中具有卷积平滑效果。抖动的参数化知识可以用来扰动神经网络的训练代价函数,从而提高训练效率。当在基于查询的学习过程中使用附加代价函数时,改进更为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信