Structure and density of sparse crossbar concentrators

Emre Gündüzhan, A. Oruç
{"title":"Structure and density of sparse crossbar concentrators","authors":"Emre Gündüzhan, A. Oruç","doi":"10.1090/dimacs/042/11","DOIUrl":null,"url":null,"abstract":"A sparse crossbar (n,m)-concentrator is a bipartite graph with n source and m sink vertices, m ≤ n, in which there exists a matching between every m source vertices and the m sink vertices. In this paper, we investigate the structure, and the density of sparse crossbar (n,m)-concentrators among all 2 bipartite graphs. We establish that the density of sparse crossbar concentrators is bounded from below by 0.2887 when m = n, from above by 1/e when m = n/2, and it tends to 0 when m = 1, as n → ∞. We also derive upper and lower bounds on the density of sparse crossbar (n,m)-concentrators for an arbitrary m ≤ n. The lower bounds provide an insight into the structure of sparse crossbar concentrators, while the upper bounds give a partial characterization of bipartite graphs which fail to have a concentrator property. This work is supported in part by the National Science Foundation under grant No. NCR9405539.","PeriodicalId":403643,"journal":{"name":"Advances in Switching Networks","volume":"62 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Switching Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/042/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A sparse crossbar (n,m)-concentrator is a bipartite graph with n source and m sink vertices, m ≤ n, in which there exists a matching between every m source vertices and the m sink vertices. In this paper, we investigate the structure, and the density of sparse crossbar (n,m)-concentrators among all 2 bipartite graphs. We establish that the density of sparse crossbar concentrators is bounded from below by 0.2887 when m = n, from above by 1/e when m = n/2, and it tends to 0 when m = 1, as n → ∞. We also derive upper and lower bounds on the density of sparse crossbar (n,m)-concentrators for an arbitrary m ≤ n. The lower bounds provide an insight into the structure of sparse crossbar concentrators, while the upper bounds give a partial characterization of bipartite graphs which fail to have a concentrator property. This work is supported in part by the National Science Foundation under grant No. NCR9405539.
稀疏横杆选矿厂的结构与密度
稀疏交叉条(n,m)集中器是具有n个源点和m个汇聚点的二部图,m≤n,其中每m个源点与m个汇聚点之间存在匹配。本文研究了所有二部图中稀疏横条(n,m)集中点的结构和密度。我们建立了当m = n时,稀疏横杆集中器的密度从下到上以0.2887为界,当m = n/2时,从上到下以1/e为界,当m = 1时,当n→∞时,它趋于0。我们还推导了任意m≤n的稀疏横条(n,m)集中器密度的上界和下界。下界提供了对稀疏横条集中器结构的深入了解,而上界给出了不具有集中器性质的二部图的部分表征。这项工作得到了美国国家科学基金会(nsf)的部分支持。NCR9405539。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信